/75 '// @7

‘ Offlce of Navai Research
‘Gontraet H00014 61 A- 0298 0006  HR- 372 012

o NATIONAL AERONAUTIGS AND SPACE ADMIHISTRATIBN
| GrantJB 22-007 068 |

| HOHZERO SUM DlFFEREHTIAL GAMES
 CONGEPTS AND MODELS |

: Alan W. Starr
© June 1988

Technical Repdrt‘ ,'NO‘-'SSD ) ”

Thi‘s' document has been approved for  public release
and sale; its distribution is unlimiited.. Reproduction in
whole or in part is permitted by the U, S. Government.

- Division of Engineering and Applied Physics |
- _Harvard University - Cambridge, Massachusetts




Office of Naval Research
Contract N00014-67-A-0298-0006

NR-372-012

National Aeronautics and Space Administration

Grant NGR 22-007-068

NONZERO-SUM DIFFERENTIAL GAMES:
CONGCEPTS AND MODELS

By

Alan W. Starr

Technical Report No. 590

This document has been approved for public release
and sale; its distribution is unlimited. Reproduction in
whole or in part is permitted by the U. S. Government.

June 1969

The research reported in this document was made possible through
- support extended the Division of Engineering and Applied Physics,

Harvard University by the U. S. Army Research Office, the U. S.
Air Force Office of Scientific Research and the U. S. Office of
Naval Research under the Joint Services Electronics Program by
Contracts N00014-67-A-0298-0006, 0005, and 0008 and by the National
Aeronautics and Space Administration under Grant NGR 22-007-068.

Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts




NONZERO-SUM DIFFERENTIAL GAMES:

CONCEPTS AND MODELS
By
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ABSTRACT

A general class of differential games, where the N players
try to minimize different cost criteria by controlling inputs to a
single dynamic system, is investigated as an extension of optimal
control theory. Dropping the usual zero-sum assumption makes
it possible to model a more realistic class of competitive situations

where mutual interest is important.

The nonzero-sum formulation has several interesting analytic
and conceptual features not found in zero-sum differential games.
It is no longer obvious what should be demanded of a "solution, "
and three types of solution concepts are discussed: Nash equilibrium,
minimax, and noninferior (or Pareto optimal) strategies. For one
special case, the "linear-quadratic" differential game, all of these
solutions can be computed exactly by solving sets of coupled ordinary

matrix differential equations.

Another feature not found in optimal control problems or in
two-person, zero-sum differential games is the difference between ‘
"open loop" and "closed loop" equilibria. The "principle of optimality"
of optimal control theory does not generalize in an obvious way to the
nonzero-sum differential game. Some simple examples are given to
illustrate this. It is shown that the various efficient algorithms of
optimal control theory (such as "differential dynamic programming')
do not readily extend to the computation of Nash equilibrium controls.
However, approximate Nash solutions can be obtained in certain special

cases.

Some simple examples are solved, and series of more difficult
but more realistic nonzero~sum differential game situations are pre-
sented (but not solved) for models of economic oligopoly, advertising

policy, labor-management negotiations, and international trade.
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CHAPTER I
INTRODUCTION

1.1 Informal statement of the problem

A differential game is a mathematical model of a competitive
situation which evolves over time. The structure of a general differen-
tial game is illustrated in Fig. 1.1. There are N "players," each
continuously controlling a different set of inputs to a single dynamic
system and each trying to minimize his own particular cost criterion.
Associated with the dynamic system is an n-dimensional "state vector"
which, at any time, contains all the information needed to predict the
future behavior of the system if the future inputs are known. The state
vector is governed by an nth order differential equation in which the

various inputs appear as driving terms.

¥ {St Controller &= measurement [

, o0d Controller  fe—o measurement
- -
= Nt Controller  |a—o measurement |e
i
Ll  DYNAMIC SYSTEM X

> =f(xt yUg,, U

6 6

Fig. 1.1. Structure of a general differential game
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A peculiar feature of this problem is that it is not generally
clear what is meant by a "solution." In fact, there is a variety of
interesting "solution" concepts, depending on the information available
to the players during the course of the game and on the "rationales"
used by the players. The remaining chapters will be concerned with
defining, characterizing and computing several of the most interesting

types of solutions.

1.2 History of the problem

(1)

Since the study of differential games was initiated by Isaacs
in 1954, many papers on the subject have appeared, mostly dealiﬁg
with problems of the pursuit-evasion type. These papers have con-
sidered only two-player differential games with the "zero-sum®" property,
i.e., there is a single performance index which one player tries to
minimize while the other player tries to maximize. A zero-sum game
is a model of "total conflict" which excludes the possibility of mutual
interest between the players. Since mutual interest plays an important
role in realistic competitive situations (especially in those arising in
economic contexts, but even in some military applications), a theory
built on the zero=-sum hypothesis is severely limited in its range of
possible applications. On the other hand, zero-sum games are much

simpler, both conceptually and analytically, than nonzero-sum games.

Apparently no journal articles have yet appeared on nonzero-sum

)

2
differential games, except for two based on the present work. (2,3 How-

(4)

ever, in a technical report, Case’' ' extended some of Isaacs results

to the N-player, nonzero~-sum differential game. Case did not explore
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the implications of dropping the zero-sum hypothesis. Although
several examples of the pursuit-evasion type were presented in that
report, no examples of the application of the model to realistic com-
petitive situations were discussed. Further work on the subject by

Case and others should appear in the literature in the near future.

The theory of nonzero-sum differential games in effect merges
general game theory with optimal control theory, and the literature
of these two subjects is much more useful than the zero-sum differential
game literature as a source of ideas in studying nonzero-sum differential

games.

1.3 Motivation and general approach

This work has been motivated by a desire to unde;rstand the
role of competition in economic processes which have a dynamic
structure. If the dynamic behavior of such a structure can be ade-
quately approximated by a continuous, finite-dimensional dynamic
system (described by linear or nonlinear differential equations) then

it is appropriate to model the process by a differential game.

It is by no means a trivial matter to formulate a meaningful
differential game model for a realistic competitive situation, especially
one with a "nonphysical" (e.g., economic) context. Even when the
model has been formulated, it is not always clear what questions to
ask. It is therefore important to consider the broad, general features
of differential games before becoming immersed in the details of com=
puting a particular type of solution to some specific model. Thus we

1
shall take just the opposite approach to that taken by Isaacs in his book( )




on zero-sum differential games. The few specific examples which
we shall consider will be intended only as illustrations. We shall not
rely (as Isaacs does) on specific examples as a means for discovering

general principles.

Although we shall discuss differential games in rather geneial
terms, we shall occasionally make restrictive assumptions. For
example, we shall consider only models with fixed terminal time.
This eliminates some pursuit-evasion models (such as several of the

(4),

examples considered by Case but does not appear to eliminate any
interesting economic models. With fixed terminal time, one is always
certain that the game will terminate, regardless of how the players

behave.

Our approach to differential games will always be from the

(5)

viewpoint of optimal control theory. We shall consider only problems
where, if all but one controller were eliminated, the remaining opti=
mization problem would be most appropriately solved by the methods

of optimal control theory, rather than by some type of nonlinear pro-
gramming. It will be assumed that the reader is familiar with the
better-known results of optimal control theory, and some of these re-
sults will be used without proof (and sometimes without a detailed

statement of the conditions under which they hold) in analysing nonzero-

sum differential games.

The spirit of this work is thus to attempt to generalize optimal
control theory to allow for several controllers with different objectives.

Such an extension of an optimal control problem results in a game
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situation, and many of the ideas of general game theory become rele-
vant. However, it is important to remember that our starting point
is optimal control theory, not game theory. We do not approach our
study of differential games as a limiting case of a succession of

fstatic" games.

Since this work is viewed as an extension of optimal control
theory, it is hot assumed that the reader is familiar with game theory.
All the game=-theoretic concepts which will be used in the later chapters
are presented in Chapter II. Many of the important ideas of general
game theory are not discussed in this work. For example, mixed
strategies are not considered because they do not seem relevant to
the applications envisioned here (see Chapter 8). Very little is said
about coalitions, not because they are unimportant, but because there
are simpler unresolved difficulties in analysing differential games
which should bé settled before such complications are introduced. In
general, we shall rely on game theory for solution concepts but not for

analytic methods.

1.4 Guide to the remaining chapters

Depending on the background and interest of the reader, there
are various ways to approach this work. The reader who is only
casually interested and who wonders if there really could be any use
for nonzero-sum differential games could start by reading the first two
pages of Section 3.1. He should then look at some of the examples of
differential game models in Chapter VIII. If his interest is aroused,
he may then return to Chapter II and proceed from there, skipping some

of the more detailed sections.
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The reader with a background in optimal control theory and
a general interest in differential games may read the chapters in
order, perhaps skipping over the less interesting sections. It is
essential, however, that the reader thoroughly understands every-
thing in Chapter II (except the last two pages in Section 2.5,
concerning directional convexity) before reading Chapters III through

VII. Chapter IIl is also essential to the remaining chapters.

The reader may also prefer to read the summary and con=-

clusions in Chapter IX before proceeding with Chapter II.




CHAPTER 1I

NONZERO-SUM GAMES

2.1 Introduction

The primary concern of this reportis differential games, where
the decision variables are functions of time and possibly of other
independent variables as well. The situations at different times in
such a game are related through a dynamic system described by a

set of ordinary differential equations.

However, many of the concepts in differential games are also
important in the much better known theory of "static" games, where
no dynamics are involved. In a static game, each player chooses his
strategy from a given set of allowable strategies. The cost for each
player is known (in advance) as a function of the strategies selected
by all players. One usually adopts the view that all players select
their strategies simultaneously without knowledge of what strategies
the rivals will choose. Even differential games can conceptually be
viewed as static games where the set of admissible strategies is some

region in a function space.

The purpose of this chapter is to present some concepts from
the general theory of games which will be useful in understanding
differential games. There are no new results in this chapter, but
the ideas and language established here form the basis for the discussion

in all the remaining chapters.
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The most general game which we shall consider is defined as
follows:

Definition: A game G contains the following objects:

1) A set of N "players," where the ith player (i = 1,...,N)
selects a strategy s, from a given set Ui of admissible

strategies.

2) A set of cost functions J = [JIJZ. .- .TN]

Tt Upx. . xUy —s N

3) A set of Norderings %, i=1,...,N, of set of all admissible
strategy N-tuples s € U;x... xUN such that (letting U = Uy ... xUy
for any u, v € U, |

< .
us v iff Ji(u) < Ji(v)

The symbol -4 may be read "...is preferred by the ith

player to... "
Note that the orderings among the various strategy N-tuples would
not be affected if, for i = 1,...,N, the function Ji(s) were replaced
by
s) =
Ii(s) = £(3,(s)) (2.1)

where fi is any strictly monotone function. In many (but not all*)

applications, these orderings are all that is needed to determine the
outcome of the game, so that one is free to make transformations of

the form (2.1).

* One exception would be a stochastic game where players try to
minimize the expected values of their cost functions.




Two special cases of the games defined above are especially
well known:

1) If N =1, then G is called a minimization problem, or

an optimization problem.

2) If N= 2 and J; +J, =0, then G is called a two-person

Zero-suim game.

Zero-sum games with more than two players may also be defined,

but they are of little special interest.

In applications where only the orderings among the strategy
N-tuples is iAmportant, any two-person game with the property that,
for allu,v e U

u‘<1 v iff v4u (2.2)

can be converted via (2.1) to a zero-sum game. Whenever a game
has property (2.2) and can be transformed to a zero-sum game, this
should be done, since these games of perfect competition are easier

to analyze than nonzero-sum games.

A third special case of some interest is:

3) It Jl = ‘IZ = ... =J then G is an identical goal game.

N)

If only the orderings are needed to "solve" the game, then
any game in which, for allu,v € U

u-<1vforsomei==>u-§vforalli,i=1,...,N (2.3)

can be converted via (2.1) to an identical~goal game. These ¥perfectly
cooperative games" may be treated as minimization problems, assuming

that the same information is available to all the players.
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However, the nonzero-sum games which are of prime interest
to us generally do not have any of the above special properties. Both

mutual interest and conflict of interest are present in a general game.

2.2 Examples®

Some of the important features of nonzero-sum games can be
illustrated by simple bimatrix games of the type presented in Luce
and Raiffa(6) and in most other texts on game theory. Several such
games will be presented in this section. They will be discussed further

in the following two sections.

Game 1. Zero-sum Game 2. Zero-sum
Player 2 Player 2
X y X Yy
a | 1,-1| 0,0 a|-1,11 0,0
Player 1 : : Player 1
b |'2,-2]-2,2 b | 2,-2{-2,2

In Game 1, Player 1 chooses between strategies a and b, while
Player 2 simultaneocusly must choose x or y. The corresponding
entries give the costs ‘Tl’ .)"2 for the two players. For each strategy
pair, Jl + Jz = 0, so the game is zero-sum. (In all games, each
player wishes to minimize his own cost and is indifferent to the cost
paid by the other player.) Player 2, if he is rational, will always
play %, and Player 1, realizing this, will play a. This ¥saddle-point"

solution is apparently the only reasonable one.

In Game 2, also zero-sum, no saddle-point solution exists.

But Player 1 can minimize his maximum possible loss by choosing a,

*The material in Sections 2.2, 2.3, and 2.4 was presented in [2] but is
repeated here for convenience. The reader may skip to Section 2.8,
where these solution concepts are illustrated by a "continuous" static
game.




on the assumption that Player 2 will ignore his own cost criterion
and attempt to do maximum damage to Player 1's criterion. By
the same reasoning, Player 2 would choose x. Thus (a,x) is a
"minimax" solution, but it is not a saddle-point solution, i.e., it

is not optimal for Player 2 against Player l's strategy.

Game 3. "Dating game™" Game 4. "Prisoners' dilemmsa"
Player 2 Player 2
x | y x y
a | 0,1 2,2 a | 2,2 10,1
Player 1 Player 1
b [2,2] 1,0 b | 1,10 5,5

Game 3 is called the "dating game." Players 1 and 2 are "het
and "she! respectively, and decisions a and x represent "go to football
game" while b and y represent "go to fashion show." The entries in
the cost matrix indicate that, while "he" and "she" have different
ideas as to which alternative is preferable, both prefer the other's
company to going to either event alone. If is easily verified that neither
(2.2) nor (2. 3) hold, so Game 3 must be analysed as a nonzero-sum

game.

Game 4, also nonzero-sum, is the celebrated "prisoners' dilemma."
Two prisoners, held in separate cells, are charged with similar crimes.
Each possesses information about the other's crime which, if divulged,
would enable the sté,te to obtain a conviction on a serious charge with a
10-year sentence. Without this information only a lesser conviction
with a 2-year sentence could be obtained. The district attorney offers

to halve the sentence of either or both prisoners if they divulge this
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information. Strategies a and x represent "do not talk, " while b and
y represent "talk." No communication is possible between the

prisoners.

2.3 Nash equilibria

It should already be apparent from Games 3 and 4 that it is not
obvious what is meant by a "solution® of a nonzero-sum game. In
this section we define one type of solution which will be of central
interest in differential games:

Definition: If J,(sy,..., sN), ceey JN(SI’ N sN) are cost functions

for players 1,...,N, then the strategy set {s},..., s’&} is a

Nash equilibrium strategy set if, fori=1,...,N,

T As%, ... 8%, 85 S>ik+l’ ceey s’*&) = Ji(s’i‘, cees s*ﬁ) (2. 4)
where 8, is any admissible strategy for Player i.
In other words, the Nash equilibrium strategy is the optimal strategy
for each of the players on the assumption that all of the other players
are holding fast to their Nash strategies. In the two player, zero=-sum

case, the Nash solution is the familiar saddle-point solution.

The Nash solution is "secure" against unilateral attempts by
any player to optimize. One must avoid the mistake of calling a Nash
solution "optimal." In fact it is almost always possible for all players

to achieve simultaneously lower costs than the Nash costs.

Note also that, for N > 2, the Nash solution is not secure against

coalitions among a subset of the players.
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The Nash solution for a continuous static game (not a bi~matrix

game) will be illustrated in Section 8 below.

It can be seen by inspection that Games 1, 3 and 4 above have

Nash equilibria, while Game 2 does not.

2.4 General properties ojé‘;nonzero-s_ym games

This section considers some of the differences between nonzero-

sum and zero-sum games.

It can easily be shown that in a zero-sum game
(i) All Nash equilibria are equivalent, i.e., have the same
costs, and

(ii) If (sy,s,) and (s},s%) are equilibrium pairs, then so are

(Sl’ sﬁ) and (s*l‘, SZ)‘ (Interchangeability)
It is also clear that there can be no mutual interest in a zero-sum game;
what is good for one player is harmiful to the other. Nor can one player

ever gain by disclosing his strategy in advance to his opponent.

Game 3, the "dating game, " is nonzero=-sum. It has two Nash
equilibria, (a, x) and (b, y), with different costs. They are not inter-
changeable, since (a,y) and (b, x) are not equilibria. Notice what
happens when both players seek to achieve their lowest possible costs.
But if Player 1 announces in advance that he is committed to strategy a,
then Player 2 has no choice but to play x! Thus it is advantageous in
some (but not all) nonzero-sum games to di‘sclose one's strategy in ad~-

vance, i.e., to make the first "move."

iy
SR




Game 4 is the classical "prisoners' dilemma.”™ The only
equilibrium solution is (b, y), vyet {(a,x) gives a better result for both
players. The solution (a,x) is vulnerable to "cheating" by one player,

while (b, y) is not. This illustrates the non-optimality of the Nash

equilibrium solution in the nonzero~sum game. There is mutual in-

terest, since both players could gain if cooperation were possible.

These sirnpie examples should convince the reader that there
are important phenomena which can arise in nonzero-sum, but not
in zero-sum, games, and that the Nash equilibrium is not the only
interesting solution. The next three sections describe other types

of solutions which may also be of interest.

2.5 Noninferior solutions

One may wish to know what could be gained by all players if a
"negotiated" solution could be reached and enforced. Clearly such
a solution should be selected from the following set of strategy N-tuples:
Definition: The strategy N-tuple 6 = {91, ceey QN} belongs to the non-

inferior set if, for any other strategy N-tuple gf,

{3,(4) < 3;(0), i=1,... N} only if {J,(4) = J.(8), i=1,...,N} (2.5

Solution gf is said to dominate solution 6 if
Ji(gf) SJ(0), i=1,...,N

with the inequality strict for at least one i. If the inequalities are

strict for all i, we say that # strictly dominates 6. The noninferior

solutions are thus the only undominated solutions. They are sometimes
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called "efficient" or "Pareto-optimal" solutions. A solution is non-
inferior if any other solution which gives a better result for at least

one player also gives a worse result for at least one player.

Solving for the set of noninferior controls is equivalent to solving
a minimization problem with a vector cost criterion. There are
several useful and well-known results for this class of problems (7,
They revolve around the question of whether or not the minimization
problem with a vector cost criterion can be reduced to a family of
minimization problems with scalar cost criteria. Such a process is

called "scalarization," and is the subject of the remainder of this section.

Let M be the set of all N-vectors with strictly positive components,

whose components add to unity:

N
M:{plp,j>0foralljandZp.jzl} (2.7)
j=1

Let M be the closure of M (obtained by replacing > by ).

Letting a strategy N-tuple [u,, e, uN] be denoted by u, we define

the scalar minimization problem P(u):

N
minimize J(k,u) = Z uiJi(u) where P € M. (2.8)
u .
i=l

Let the set of noninferior costs be denoted by A. Let Qbe defined as
the set of cost vectors obtained by solving all problems of the form

(2.8)

Q={J) ]E solves P(p) for some p € M} (2.9)

and let §? be the closure of §2.
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We can now state some of the relations between the noninferior
set and the set of solutions to all scalar minimum problems of the type
(2. 8).

Theorem: £ ©A .

Proof: Suppose U € Qbut U is not noninferior. Then there is a
solution v € U such that Ji(v) s Ji(—ﬁ) for all i, with at
least one inequality strict., But since all b, are positive,
this means u does not minimize J(i,u) and hence J(u) £ Q,

‘a contradiction.

Thus we can always obtain at least some of the noninferior solutions by

solving P(p) for all . € M.

Theorem: If for each p € M either P(pr) has a unique solution or no

( solution, then 5§A.

Proof: Suppose u 6?2— for some M € _ﬁ, and that u £ A. Then
av € U, v # u, such that v dominates u. But this implies,
for any p € M, that J(p, v) S J(u,u) and hence u is not

the unique solution of P(u.).

DaGunha and Polak( 7) prove that, if Ji(u) is a convex function
for all i and U is a convex set, then
ACQ (2.10)
The proof, which is long, is omitted here.
Note that solutions on the boundary of § correspond to weighting

vectors B with one or more zero components. Since such solutions

completely ignore the interests of the players whose weightings are
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zero, they are of little interest to us. Thus for all practical purposes,
the entire noninferior set can be found by solving scalar minimization

problems whenever the conditions are such that (2. 10) holds.

There are, in fact, less restrictive conditions under which

(2.10) holds; they depend on the idea of directional convexity™:
Definition: Let P be a convex cone. A set A is said to be

P-directionally convex, if for any x,y € Aand any A\, 0 S A S 1,

Ax+ (Ll -Ny+p=2, wherez e AandpceP.

N. N

Let E denote the negative orthant in the euclidean space E™'.

Theorem: If the set Z = {J|J = [T, (), .. .,JN(u)], u € U}

(i.e., the set of all feasible cost vectors) is E° ~“~directionally
convex, then AC Q.
Instead of proving this formally (see Ref. (7)), we illustrate the idea

with some simple diagrams for the two-player game.

3,

Fig. 2.1. A case where Z is not convex but AC £2.

®This concept is not used in the remaining sections. The reader may
skip to the top of page 2-13.
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. A case where Z is EN'-directionally convex but not convex is

shown in Fig. 2.1,

Note that §2 only contains solutions which lie in the convex
hull of Z, Thus (2.10) can hold only if all the noninferior solutions
lie in the convex hull of Z. Fig. 2.2 illustrates a case where {2.10)

does not hold. Note that Z is not EN'-directionally convex.

Jo

\ Fig. 2.2. A case where A Q.

Finally, Fig. 2.3 illustrates a case where Q ¢ A. Note that such
a counterexample requires a p. which is in ™M but not in M, since SCA
always. Note that, for p = [1, 0], P(n) does not have a unique solution.

J

- SOLUTIONS

Ji
Fig. 2.3. A case where -S—Z'f; M.
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When convexity conditions are such that 2. 10 holds, all the non=
inferior solutions can be found by solving for Q. However, solutions
lying on the boundary of € must still be checked to see if they are non-

(

. . . 8 .
inferior. Klinger ) has given a counterexample to demonstrate this.

The members of the noninferior set Aare not ordered by the

vector criterion. The negotiating problem, equivalent (if the problem

if scalarizable) to selecting a p € M, can thus not be solved unless

further rules are specified.

2.6 Minimax solutions

When a player believes that the other players will play Nash
equilibrium strategies, he should also play the Nash strategies. But
if he cannot be sure how his rivals will select their strategies, he
may instead choose to minimize his cost against the worst possible

set of strategies which they could choose.

Definition: A strategy Ei € Ui is minimax for the ith plaver if for all

[ul”"’uN]ele"“"XUN , (2.11)
max _
Uy e es Wy gy Uigys e e Uy Js (ul""’ui-l’ui’ui+1""’uN)
max
s Upyen s W Wy Up Iy Uy, ey, 0, gy

Note that only the ith player'!s cost function enters into the
determination of his minimax strategy. This is equivalent to finding
the equilibrium solution of a 2-player zero-sum game, where the
opponent of Player i chooses all the strategies except the ith and tries

to maximize Ji' Player i can also calculate his minimax cost -ji' If
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he plays ;i’ he will pay no more than Fi' He will probably pay much
less, since the other N - 1 players, each with his own cost to mini=
mize, are unlikely to choose the combination of strategies which
maximizes ‘Ti (they may for example play their own minimax stra-
tegies). Since it fails to take account of the other players' cost
criteria, and since it is excessively pessimistic, the minimax solution
is somewhat unsatisfactory in the nonzero=-sum game. In some
reasonable, well-behaved games, Fi = co. Of course, in the 2-player
zero-sum game, the Nash solﬁtion, if it exists, is also minimax, but

this is not true when N > 2, nor in a nonzero-sum game.

2.7 Coalitions

The most important new feature arising from the extension from
2 players to N players is the possibility of coalitions among groups of
players. In Section 5 we have already considered one special coalition --
the one involving all the players, with no "side payments" allowed.
There are many papers in the game theory literature
dealing with various aspects of coalitions, for example, the existence of
solutions which are stable against the formation or the disolving of
certain types of coalitions. However, very little of practical importance
can be said unless strict rules governing the formation and enforcement

of coalitions are postulated.

In dealing with differential games, we shall (with the exception of
noninferior solutions) leave the possibility of coalitions as a topic for

further research.
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2.8 Example: a function minimization game

In this section the ideas presentéd in this chapter are illustrated
by a two=-player, nonzero-sum game involving the minimization of

continuous functions.

Consider the game

min

Player 1 : u,

Jy(up,u,)
Player 2 : rﬁlzn Jz(gl,uz)

where uy and u, are scalars and where the functions J1 and JZ are
assumed to be convex and twice differentiable with respect to both

arguments.

Equicost contours in the space (ul,uz) are plotted for .]"1 in

Fig. 2.4a and for J, in Fig. 2.4b.

2

Uy

Fig. 2.4a Fig. 2.4b

Suppose now that Uy, @ variable over which Player 1 has no

control, is fixed at level EZ’ as indicated in Fig. 2.4c. Then the best




Player 1 can do is to minimize J; along the line u, = GZ' Clearly

this is achieved by choosing uy such that the cost contour is tangent
(externally) to the horizontal line u, = EZ' The locus of such points
for all possible 1_,{2 is given by the dashed curve iﬁ Fig. 2.4c. Itis

the locus of points where the cost contours of Jl are horizontal.*

Similarly, if Player 2 must optimize against a given El’ the
result is a u, such that the line uy = El is tangent externally to the
cost contour of Jz. The locus of such points (where the cost contours

of JZ are vertical) is given by the dashed curve in Fig. 2. 4b.

Superimposing Fig. 2.4b on Fig. 2.4c then shows us the Nash

solution; it is the intersection of the two dashed curves in Fig. 2.4d.

Fig. 2.4c¢ Fig. 2.44d

Our assumptions about .]'1 and JZ assure that if there is a Nash

equilibrium, it is the solution of the coupled nonlinear equations:

0

]

J
1111
{2.12)
J‘ P
Zuz

*These points are the set of "rational solutions for Player 1."
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A convenient procedure for solving (2.12) is to extend the familiar

Newton-Raphson method: expanding (2.12) about the most recent
(k) (k)
2

iterative solution uy; ,u and evaluating at the Nash solution GI’EZ

gives
- (k) - LK)y
Jlu(lk) + Jlu(lk)ul (u.1 uy ) + Jlu(lk)uZ (uz usy )y =0
= _ . (k) = _ (k) _
Jzu(zk) + JZu(Zk)ul (u1 uy ) + JZu(zk)uz (u2 uy )y =0

(where higher order terms have been dropped). Solving these approxi-

mate equations for _1;1,-1;2 and letting the result be our next iterative

(1k+1 ) L)

solution u 2 , we have the algorithm

= . = e r~—
-1
u§k+l) u(lk) Jlu(lk)u1 Jlu(lk)uz Jlu(lk)
= . (2.13)
(k+1) (k)
u J, (k) J, (k) J;. (k)
:12 i _2 ) _Zuz uy 2uy ', lus

The generalization to more than two players is obvious.

It can be seen in Fig. 2.4d that both players could simultaneously
achieve a better result than the Nash solution. The solutions which

dominate the Nash solution are shown as a shaded region in Fig. 2. 4e.

Fig. 2.4e Fig. 2.4f
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It should be clear that the noninferior solutions are those points
where the cost contours of J'l and Jz are tangent externally. These
are the only points which are undominated. The noninferior set is
the dashed curve in Fig. 2.4e. As usual, itis a ‘(N - l)-parameter

family of solutions when there are N players (in this case, N = 2).

To illustrate minimax solutions, we add the assumption that the
feasible ranges for uy and u, lie between upper and lower bounds indi-
cated in Fig. 2.4f. Player 1 then ignores J, and tries to optimize Jl
against the u, which would hurt him most. This leads to the pessi-
mistic assumption that u, will be chosen at its upper bound, and
consequently Player 1 choses El‘ By similar reasoning, Player 2
chooses -1-1-2, assuming pessimistically that uy will be chosen at its
lower bound. The resulting costs when El and EZ are played are, of
course, a pleasant surprise to both players. In this case, the result
happens to /be worse than the Nash solution for Player 2 but better for

Player 1.

Even when the functions J, and ‘IZ, are convex and well-behaved
as the ones we have considered, it may happen that there is no Nash
solution. Such a situation is illustrated in Fig. 2.5.% Note that the
noninferior solutions still exist. If constraints are aaded as in Fig.
2.4f, minimax solutions will also exist. Because the sets of rational
solutions for Player 1 (upper dashed line) and for Player 2 (lower dashed

line) do not intersect, there is no Nash solution.

*®It has been pointed out by K. Arrow that the nonexistence of the Nash
-solution in this example depends on the fact that the set of feasible
controls is unbounded.
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Fig. 2.5

2.9 Summary

Some of the basic features of general nonzero-sum games have
been introduced as a background for the discussion of differential
games to follow. There are N players, each trying to select a stra-
tegy to minimize his cost criterion. The interests of the players are
not diametrically opposed, so there is an incentive to seek "cooperative"

solutions, if such agreements can be enforced.

There is no single satisfactory definition of a "solution" to a
nonzero-sum game. One type of solution, the Nash equilibrium, is
secure against unilateral attempts by any player to optimize. If agree-
ments can be reached and enforced, it is usually possible for all players
to simultaneously achieve better results than the Nash solution. The
set of noninferior solutions includes all solutions which are undominated.

Finding this set, from which a "negotiated" solution would be chosen, is’
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sometimes equivalent to sclving an (N - 1)-parameter family of
optimization problems. The information needed to select a particular
member of the noninferior set is often not included in the formulation

of the game.

If a player is unsure of what rationale his rivals are using, he
might choose to minimize his worst possible cost by choosing his
minimax strategy, which can be found by solving a two-person, zero-
sum game.

All of these ideas were illustrated by a two-person game designed
to give the kind of graphical insight which may be useful in studying

differential games.




CHAPTER II

DIFFERENTIAL GAMES

3.1 Introduction

In the general N-player differential game, the ith player
(i=1,...,N) wishes to choose his "control" u, at each time t in

the interval [t ,t ¢] to minimize

te

I, = K (x(t), t) + S L, tyup, - - -, up)dt (3.1)

t
o

subject to the constraint (common to all players)

% = f(x,t,ul,...,uN) R x(to) =% (3.2)

where x is a "state vector" of dimension n. There may also be in-
equality constraints on the control and/or state variables, but at
this stage of the discussion such constraints need not be defined
formally. The terminal time tf may be fixed or variable; we shall

generally consider it fixed.

When N = 1, the differential game is an optimal control problem.

One naturally expects that extensions of various well-known results
in optimal control theory will be useful in studying differential games.
In fact, it would be foolish to even attempt to analyze an N-player
differential game if the "corresponding" optimal control problem can

not be solved by known methods.
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With more than one player, the differential game still resem-
bles an optimal control problem, bu‘t now game-theoretic considera-
tions, such as those discussed in the previous chapter, complicate
the situation. Recall that a general nonzero-sum game cannot be
"solved™" until one specifies what properties the "solution" should
have. Similarly in a differential game, one must demand that the
solution have some attribute such as minimax, Nash equilibrium,

noninferiority, stability against coalition formation, etc.

One must also specify what information is available to each
player during the course of the game. We shall always assume that
each player knows the various parameters of the problem, including

his rivals' cost criteria.

We shall generally make one of the following two additional
assumptions: either (i) each player has continuous perfect measure-
ments of the state vector x throughout the course of play, or (ii) no
such measurements are available to any player. These assumptions

will be called "closed loop" and "open loop," respectively.

Of course, many other assumptions about the type of informa-
tion available to the players might be considered. It is perhaps
worthwhile to list some of these possibilities, even though none of

them will be pursued further in the remaining chapters.

1) The players may continually receive noisy measurements of

the state vector. Some very special stochastic zero-sum

differential games have been analyzed( 9,10,11)

but the general
nonzero-sum stochastic differential game seems beyond the

present state-of-the art.




2) Some players operate "open loop" while others operate
“closed loop." Or perhaps a choice is offered, with a
"measurement cost" assessed to those players who choose

"closed loop" operation.

3) Although the controls are applied continuously, the players
receive perfect measurements only at discrete times

("sampled data feedback controls™").

4) The players do not have complete knowledge of all the para-
meters of the game (such as the exact cost criteria of the
rivals) and must deduce them by measurements of the state
vector during the course of the game. Such problems might

loosely be termed "adaptive differential games."

5) Each player receives perfect measurements of some (not all)

components of the state vector.

6) The players receive perfect measurements but they are not
sure what rationale (i.e., minimax, Nash, coalition, etc.)

their rivals are using.

While all of these possibilities arise in practical applications, it is
obviously hopeless to try to analyze them until we have made some
progress in the simpler open loop and closed loop "deterministic®
differential games. Thus the five suggestions above are left as topics

for future research.

3.2 Nash equilibrium solutions

When each player uses a strategy which is optimal against his

rivals' strategies, the result is the Nash solution, defined formally
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in eq. (2.4). We have already seen that Nash solutions are non-
optimal in the sense that it is usually possible for all players simul-
taneously to obtain lower costs, but this better result can only be
achieved if the players can be trusted not to try to minimize their
individual costs. In situations where " cooperative arrangements
cannot be made or enforced, our interest centers on the inefficient
but "secure'® Nash solution. Of course, in some games Nash
solutions may not exist, while other games may have more than one

Nash solution.

If the ith player in a differential game knew the Nash strategies
of his rivals, he could find his own Nash strategy by solving an
optimal control problem. Our approach to the problem of finding a
set of Nash controls for all N players is then to use methods known
in optimal control theory to solve the optimization problem for each
player in terms of the other players!' (still unknown) cohtrols. Then
by demanding consistency among these N solutions, we can hopefully

solve for the N Nash strategies.

The usual procedure for solving optimal control problems is to

obtain a set of necessary conditions with the following properties:

1) An algorithm can be devised for finding (numerically) all

controls which satisfy these conditions.

2) The conditions are strong enough so that only a few confrols

(hopefuily only one} satisfy them.

*The Nash solution is secure only against unilateral attempts to
optimize, not against coalitions involving two or more rivals.



3) A test is available for verifying whether or not a particular

control actually is optimal.

We shall restrict our attention to differential games where the

"corresponding" one-player game can be solved by this approach.

It may be objected that the discussion below does not treat
differential games in their most general form. For example, problems
with inequality constraints and singular problems are not given the
attention they deserve. However, even the relatively simple un-
constrained, nonsingular differential game provides an adequate
means for illustrating the general features of differential games.

We shall see that even with these restrictions, it is not easy to com-

pute Nash solutions.

In Section 1 we discussed the types of information which might
be available to the players and we decided to restrict our attention
to two cases>: no measurements (open loop) or perfect measurements
(closed loop) of the state vector by all the players. We shall see that
a differential game may have both an open loop and a closed loop Nash
solution, and that these solutions give different paths and costs. This
result may surprise the reader who is familiar with the theories of

optimal control and two-person zero-sum differential games.

3.2a Open loop Nash solutions

Consider a general differential game of the kind described by
(3.1), (3.2) where there are no inequality constraints on the state or

control variables and no restrictions on the terminal state. Let the
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th player is given the open loop

terminal time te be fixed. If the i
Nash control functions u}?(t), j #1i, for all his rivals, then he can
obtain a set of necessary conditions for his own open loop Nash

control u’ik(t) by variational methods which are well-known in optimal

control theory.
. ' TR .th .
Define the "Hamiltonian®' for the i~ player:

T
H.(x,t,0q,... A= L, (x,t,u cyup) t )\i flx,t,u

» Upp 15 1,.,.,uN)
(3. 3)

where )\i is a vector of dimension n. Then since u’i*‘(t) must minimize

J: when the other players use their Nash controls, the following first

order necessary conditions must hold:

ko= flx, t, 0k, (8), . . ., uk(E) (3. 4)

A = “H 0660, (0, W0, () = K, (x(t)) (3. 5)

0= H,_ (x,t,uf, (), ..., uwkt), L) (3. 6)

A second order necessary condition is that, along the "Nash path,"

H, is positive semidefinite {(3.7)
111i\li

while a sufficient condition for u’il‘ to be at least locally minimizing

is that, along the Nash path,

iu.4u,

H. is positive definite {3.8)
11 ' :

The problem is said to be nonsingular if (3.8) holds for almost all

te [to, tf] and for all possible control functions u,(t).

*More precisely, the "Nash open loop Hamiltonian."
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Eqs. (3.4), (3.5) and (3.6), fori=1,...,N, provide a set of
necessary conditions for the entire N-tuple of Nash open loop control
strategies. In some examples, the N coupled (vector) algebraic
equations (3. 6) can be solved, either numerically or analytically,
to obtain a unique control N-~tuple {ul, veey uN} as a function of
Xty Ny, e, )\N' Often it can also be that (3.8) holds for this N-tuple
for any x,t, )\1, vy }\'N' When this is the case, the controls can be
eliminated from (3.4) and (3. 5), leaving a nonlinear two-point
boundary value problem with n differential equations with given ini-
tial conditions and nN with terminal values specified as functions of
the terminal state. Various iterative algorithms are available(lz’ 13, 14)
for solving problems of this type when N =1, One would hope that

some of these methods could be extended to the differential game

(N > 1).

It should be noted that the ith player's Hamiltonian is extremized

only with respect to his own control; generally

Hiuj £0 for i#j {(3.9)

This fact is the source of considerable difficulty when one attempts

to compute Nash equilibria.

3.2b Closed loop Nash solutions

If the ith player were given the closed loop Nash strategies
\Ilj(x, t), j # i, for all his rivals, he could find his own closed loop
Nash strategy \Ili(x, t), by solving optimal control problems starting
from each point in the state-time space (i.e., by "filling the space

with optimal trajectories ).
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One way to do this is to use variational necessary conditions
similar to those used for the open loop control above. However, now
the dependence of the rivals' controls on x must be included in con-~
sidering variations of the ith player's control. Defining the ith

Hamiltonian as in eq. (3.3), the closed loop necessary conditions

are, fori=1,... , N
b} 3 b

5{=f(x,u1,,”,uN,t) ) x(t ) = x
. T 8 N o, _alp.i
A= e Hilxtug, e um ) - e on (% t) (3.12)
j=t
i
(e = ooy K, (x(t), £ 3.13
i T Bxlty iU e (3-13)
u, = \Ili(x, t) minimizes Hi(X5 CAUTRERFE S PA A AP PRE » s )\i)

(3.11)

(3.14)

Notice that when N = 1 {optimal control problem) the second term in
(3.12) is absent. The optimal "closed loop!" control u(x,t) can then
be obtained by solving for the "open loop" optimal control u(t) for
every initial point (x,t). This method is not valid in the N-player
game, however, due to the summation term in (3.12). In the optimal
control problem, these necessary conditions are a set of ordinary
differential equations, but in the N-player nonzero-sum game, they
are a set of partial differential equations, generally very difficult to

solve.
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The presence of the summation term in (3. 12) makes the
necessary conditions (3.11)-3.14) virtually useless for deriving
computational algorithms. Note that this troublesome term is ab~.

sent in the optimal control problem (because N = 1), in the two-

oH BH2
person zero-sum game (because H1 = -H, so 8u2 = - 3112 = 0),
o,

and in the open-loop nonzero-sum problem (because 73-;{‘1 = 0). One
certainly expects the open and closed loop solutions to be different

whenever this term is nonzero.

Using reasoning familiar from optimal control theory, one
may interpret (3.12) as follows: hi is the "influence function" for
the ith player, i.e., the sensitivity of his cost to a perturbation in
the state vector. If the other players are using feedback strategies,

any perturbation Ox of the state vector will cause them to change
ow. th

their controls by an amount -5;1 0x. Ifthe i~ Hamiltonian were al-
ready extremized with respect to the control uj, j# i, this would not

th OH,
affect the i player's cost, but since generally o £0forif s

J

the reactions of the other players to the perturbation will influence
the ith player's cost, and the ith player must account for this effect

in considering variations of the trajectory.

A more satisfactory procedure for dealing with closed loop Nash
controls is the value function approach. Let d(x,t) = {yfl(x,t), ceey Q{N(x, t)}

be any set* of control strategies for the N players (resulting in piecewise

*Strictly speaking, the set g(x,t) must be defined so that the trajectory

X¢(t) satisfying (3. 11) could be continued from any initial point (Xo’ to)’
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continuous ui(t)), and let ng(t) denote the trajectory through x(to)

resulting when these controls are used. Then the value function

associated with this strategy set is piecewise continuously differ-

entiable and defined as

t
f

Vi(xo’ tos 55) = Ki(x(tf); tf) + Svt Li(xﬁf’ ?‘: t)dt (3.15)
[0}

When g(x,t) is a Nash strategy N=tuple, the functions defined in (3. 15)

will be called Nash value functions. Since these are the only type to

be discussed here, the argument 4 of Vi will be suppressed. One
should remember, however, that some differential games have more
than one closed loop Nash solution; a different value function then

exists for each Nash strategy N-tuple.

By applying the definition of the Nash property (2.4), the usual
"principle of optimality " argument can be extended in an obvious way
to show that the value functions Vi(x, t), i=1,...,N, are solutions of

the partial differential equations

aVi 6Vi
prall “]:rlllinHi(x;t;\ﬂl, cee "I'i-l’ui’\l'iﬂ’ cee ,\I’N; _3—;{—) (3.16)

i
where

Vi(x(tf), tf) = Ki(x(tf)’ tf)
This is the generalized Hamilton-Jacobi-Bellman equation. The
equilibrium strategy \I'i(x, t) is the control u, which achieves the mini-
mum in (3.16). To integrate (3. 16) backward from the terminal
manifold, we must be able at each (x,t) to find the "Nash saddle-point"

of the vector Hamiltonian H = [Hy, ... ,HN], i.e., to solve an ordinary
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continuous nonzero-sum N-player game (not a differential game) at

every instant t. This is not always possible, but it is possiblé in

an important class of games. A differential game is said to be normal

if (i) it is possible to find a unique Nash equilibrium point ¥*(x, t, Aiseeesh

for the vector H for all x, N and t, and (ii) when the equations

BVi A BVN 8Vi
—t - - T — R R WO
5t = “H;lx 60 (%, 8, R R eend - (3.17)
5<=f(x,ul,...,uN,t) (3.18)
ov ov
1 N
ui:W;(X’t’—E;"."-B;-) {3.19)

are integrated backward from all the points on the terminal surface
feasible trajectories are obtained.+ The next chapter considers a

class of games which are normal.

3.3 Noninferior solutions

If it is possible for all N players in a differential game to agree,
prior to the starting time t,, to coordinate their strategies, then the
resulting set of controls should be chosen from the noninferior set
of solutions, defined for the general game in eq. (2.5). We have
already seen in Section 2. 5 that finding the set of noninferior solutions
to a "static" game is equivalent to solving a minimization problem

with a vector cost function. Similarly, finding the noninferior strategy

N

sets for an N-player differential game iséquivalent to solving an optimal

+Note that condition (i) requires that a unique set of controls giving a
Nash point of H(x,t,u,\) can be found as an explicit function of x, t,
and M for any A. This is a sufficient (but not necessary) condition for
the existence of a Nash trajectory. It is relatively easy to determine
if (i) is satisfied, since no differential equation need be solved.
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control problem with a vector cost criterion. All the statements

made in Section 2.5 still apply, since they depend only on properties

of the set of feasible results in the cost space EN, not on how these
results are obtained. However, in an optimal control problem it is
impractical to try to generate the set Z of feasible results. Unless
the functions involved in the cost criteria Jiseees ‘IN are very

special (e. g., convex in all the controls) there appears to be no
practical way to answer the appropriate questions about the convexity

properties of Z.

Whether or not these questions about Z can be resolved, we can
in any case obtain some of the noninferior solutions by finding the set
{2, the set of solutions of all problems P(p), where . € M (see defini-
tions in eq. (2.7)). For the differential game, the problem P(p) is

an optimal control problem with a scalar cost criterions

N tp
P(p): minimize J(p) = Z ui[Ki(x(tf)) + Slt Li(x, tyug, ... ,uN)c'
Yprer o UN i=1 o
(3.20)
subject to
% = f(x, tyug, e uy) x(t ) = % (3.21)
where
N
_ N -
M={peE" |u >0, p, = 1}
i=1

The components of { are interpreted as the relative weights placed on
the interests of the players entering the agreement. Since it is hard

to see why any player should accept zero weighting on his cost criterion,
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]

the question of whether or not all the solutions in Q are noninferior

is probably not important as far as negotiations are concerned.
However, the situation could be as in Fig. 2.2, where an apparently
"reasonable" portion of the efficient set Ais not included in 5 In
practical applications, it might be possible to tell whether or not {2
contains all the '"megotiable" solutions. Ewven if this can not be deter-
mined, it is certainly useful to compute the N -~ 1 parameter of solutions
which generate §2, since they are always noninferior and they can be

used to eliminate large portions of the cost space from consideration.

DaCunha and ZPolak(‘1 2 have extended the Pontryagin maximum
principle to obtain a set of necessary conditions for a solution of an
optimal control problem with a vector cost criterion. Letting

L=[L1,..,,LN] , u=[u1,...,uN] R etc.
we can state these conditiofis in our notation:

The vector optimal control problem is to find a control G(t),

ty S¢S te and a corresponding trajectory %(t) determined by (3. 2},

such that

(i) i(t) is a measurable, essentially bounded function whose range
is contained in an arbitrary but fixed subset U of E™,

(ii) For every control u(t) and corresponding trajectory x(t) satis-
fying (i), the relation

i

K(x(tf);tf) + S

£
Li(x, t,u)dt S K(x(ty), ty) + g L(x%,t,u)dt
t t

(o) o]

(componentwise) implies
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t
f f

K(x(tf)tf) + i L{x, t,u)dt = K(i(tf),tf) + S:c Lk, t,U)dt
[ (o]

Let i(t) be a control which solves the vector optimal control problem.
Assume f(x,t,u) and L(x,t,u) are continuous in u and x and are con-
tinuously differentiable in x. Then there exists a vector p € EN,

B = 0, and a vector function AM(t) € En, with [p, A] # 0, such that

(i) 3T(e) = -pT ALl t,8) T B8, ¢,8)
Ox 53¢

AR (3(t,), t.)
@ AT =t —5I L

(iii) for every v € U and almost allt € [to, tf],

pTL(%, 6, 8) + N(BEE, £, 8) S 1l Lix,t,v) + N Ti(x, t, v)

N
Note that if p # 0, then we can scale the problem so that Z My = 1.

i=1
We then recognize the necessary conditions for problems of the type
P(p), where p € M. In fact, $ contains all solutions which satisfy |
the above conditions except those for which p £ 0 (all components).
But when . £ 0, the solution to (i), (ii) above is A(t) = 0, which is rot
allowed. Thus there appears to be no difference between the neces-
sary conditions for the vector optimal control problem and for solu-
tions in 5 Thus the necessary coﬁditions are not strong enough to

distinguish between the sets Q and A.

We conclude that we can find at least some (and perhaps all} of

the set of noninferior solutions to a differential game by solving an
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(N - 1)-parameter family of optimal control problems, where the
parameters are the relative weights on the various players' costs.
Even if this set § of solutions (or its closure) does not contain all y
the efficient solutions, it may be satisfactory as a negotiation set.
For example, it may contain all the efficient solutions which domi-
nate the "threat point" (the result if no agreement can be reached).
The problem of how to decide which member of the noninferior set

to implement (the bargaining problem) cannot be solved unless further

rules are specified.

3.4 Minimax solutions

If the ith player has no idea of what rationale his rivals are
using (perhaps he does not even know their cost functions) then he
could make the pessimistic assumption that all the other players
will join forces to try to maximize his cost. Player i thus envisions

himself as playing in a two-person zero-sum differential game:

t
£
minimize maximize Ji = Ki(x(tf)’tf) + ‘Sq Li(:x, t,u)dt
u, LI ERRREA N PR PPN to
(3. 22)
subject to
% = :E(x,t,u,l,...,uN) , x(to) =X {3.23)

If no measurements are available to Player i, then the function "ai(t)
which minimizes the worst damage which the other players can inflict on
him is his open loop minimax strategy. Of course, the controls of the
other players which the ith player obtains from his calculation are not

actually their minimax controls. To obtain all the minimax controls
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uj, i=1,...,N, we must solve N separate two-person zero-sum
differential games. When these controls are implemented, the re-
sulting trajectory and costs will not be those predicted by any of the

players (unless the game really is two-person zero-sum). Generally

all players will achieve better than their minimax costs.

If the ith player has continuous perfect measurements of the
state vector, then when he implements his minimax control he will
notice, after a very short time, that the trajectory x(t) does not
correspond to his expectation; this is of course due to the other
players not trying to maximize the ith player's cost. But player i
may assume that, although they have not done so so far, they will at
all future times try to maximize his cost. He must then calculate

‘a revised minimax strategy at each (x,t). Such a strategy Ti-i(x, t)
is a closed loop minimax strategy. It has the same disadvantage as

e . Ve . . . . s
the open loop minimax solution -- it is excessively pessimistic.

*Ref. [3] discusses some interesting new phenomena which arise in
nonzero-sum differential games, such as the important difference
between open loop and closed loop solutions and the relationship be-
tween Nash solutions, noninferior solutions, and the "principle of
optimality. " These phenomena are illustrated by some simple multi-
stage discrete (bimatrix) games.




CHAPTER IV

LINEAR-QUADRATIC DIFFERENTIAL GAMES

4.1 Introduction™®

This chapter considers a special class of differential games
where the system is linear and the cost functions are quadratic
functions of the state vector and controls. Like its counterpart in
optimal control theory, the linear-quadratic differential game
(LQDG) is analytically tractable and of some practical interest.

It is useful in modelling a situation where each player is trying to
regulate an output of the common linear system, i.e., each player
tries to make his particular output (a linear function of the state
vector) follow as closely as possible some prescribed program,

without expending too much control effort.

The LODG is probably the only non-trivial class of differential
games in which the Nash solutions, both open and closed loop, as
well as solutions based on other rationales, can be obtained exactly

without difficulty.

4,2 Definition

In a linear-quadratic differential game (LQDG) with N players,

the ith player chooses u, trying to minimize

#The material in Sections 4.1-4, 5 was presented (in less detail} in
Ref. [2]. .



‘ te N N
(LT L L T LY T
Ji -—S:C {zx Qix-l— > Z (x Gijuj + > Z uj Rijkuk)
o j=1 k=1
N
T T 1 T T
ta xt Z ¢ uj}dt +ozx(ty) S, plty) + & x(ty)
j=1
subject to
N
¥ = Ax + ZB.u.+w, x(t ) =x
ij o o)
j=1
where Q.,, G..,, R,.., a., c., A, B,, and w are functions of time
i* Tij ijk’ i’ i i

known to all the players. Depending on which type of solution is
sought, the controls u, may be functions of time only, or of the

state vector and time.

This is the most general form of the LQDG.* However, all
of the interesting features of this problem can be exhibited by con-
sidering a simpler, less cumbersome version where the cross
terms, linear terms, and inhomogeneous terms are omitted:

£ N

Ji = %5; f(xTQix + Z ujRijuj)dt + %xfTSifxf
o j=1
subject to
N
%= Ax + Z Bug 5 oxltg) =x,, %=ty
j=1

(4.1)

(4.2)

(4. 3)

(4.4)

®*The addition of inhomogeneous terms to the cost criteria would not

affect the solutions.
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In the remainder of this chapter, only the problem (4. 3), (4.4) will
be considered. The corresponding equations for the general LQDG

are presented for reference purposes in Appendix A.

Since infinitely negative costs can be achieved if Rii has any
negative eigenvalues, we shall always assume that Rii is positiye
semidefinite for all i. If Rii is positive definite for all i, the problem
is nonsingular. Unless otherwise stated, we shall always assume in

this chapter that the gatne is nonsingular.

4,3 Nash equilibrium solutions

The Nash solutions, either open loop or closed loop, can be

obtained by applying the results of Chapter III.

4. 3a Open loop Nash solutions

In the open loop case, from the point of view of the ith plavyer,
the controls of the other players must be considered functions of
time only. Either the variational necessary conditions (3.4)-(3. 6)
or the value function approach (3.16) can be used, but if the latter
is used the partial differential equation (3.16) must first be converted
(via separation of variables) to a set of ordinary differential equations
before any relation can be assumed between the other players' con=~
trols and the state vector. Consequently, it is easier to solve the
épen loop problem by applying the variatic‘)nal necessary conditions.

When all controls except the ith player's are treated as given
th

functions of time \Ilj(t), j #1i, the variational Hamiltonian for the i

player is
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N
1

_1.T 1T 1 T,
Hi = 5% Qix + > U, Riiui + > ;\Qj(t) Rij\llj(t)
J#i

N |
T
+ X, (Ax + Bu, + Z Bu(t)) o (4. 5)
ifi

The necessary conditions for the ith player are then

\ = - - T -

Xi = Qix A )\i ; )s.i(tf) = sifxf | (4. 6).

w = -R-IgTh, | (4. 7)
1 11 1 1

and the state equation becomes

N

. N -1, T _

% = Ax -2’1 BREBIN ,  xlt) = xg (4.8)
J:

Eg. (4.6) (fori=1,...,N)and eq. (4.8) are a linear two-point
boundary value problem consisting of N + 1 coupled vector differen-
tial equations, each of the same dimension as x. To solve it, we

define the square matrix Si(t) by
M(E) = S (o), i=1,...,N (4.9)

Conditions (4. 6) and (4. 8) are then satisfied when Si(t) is a solution

of

N ,
2 _ ATo . ) -1 T
S, =-A"S;, - 5A-Q + z §;BR;B/S; (4.10)

j=1

5;(tg) = S;¢




Note that (4.10) is a set of N coupled quadratic matrix differential

equations. However, Si is in general not symmetric. (One may

verify that the asymmetric part of (4.10) has a nonzero driving term. )

When the Nash open loop strategies

-l T
wi(t) = <R B IS (6)x(t) (4.11)

are played by each player, then the cost paid by the ith player is

| 1 T
Tx,t) = 5x Pt )x (4,12)

where Pi(t) is the solution of the linear differential equation:

N
P =-aTP -PA-Q + Z ®.B.RIBTs +sTB R 8TP,
i S e It % It Tt Blied B et it B
j=1
~sTB.rRIR R7IBTS)
TR} B VR Rt T
P,(t) = 5, (4.13)

This result is easily obtained by assuming the form %x(t)TPi(t)x(tg
for the remaining part of the cost starting from t. Equating this with
the cost function defined in (4. 3) and differentiating then yields (4. 13).

Note that the N matrix equations in (4. 13) are uncoupled.*

The reader who is surprised by the asymmetry of (4.10) may
find it instructive to follow the alternate derivation of these results,

which is presented in Appendix B. It will be seen there that the

*Note also that the S; come from the open loop "Riccati-like" equation
(4.10) and are meré&ly parameters in the linear equations (4.13). The
reader should not confuse (4.13) with (4.17) in the next section; they
have different solutions because the Sj are different.
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multiplier 7\.3 may be interpreted as Vix(x(t), t), where Vi(x, t) is
the ith optimal return function based on the assumption that the other

players do not change their control functions uj(t), j#i.

4.3b Closed loop Nash solutions

When the players all have measurements of the state vector,
the Nash equilibrium strategies can be found either by using the closed
loop variational necessary conditions (3.11)-(3.14) or by the value
function approach (3.16). We choose the latter because it is concep-

tually clearer. Note that x must be treated as an independent variable.

For the LQDG the value function equation (3.16) is

N

1 T
Ru + 3 Z L (x, R, % (x, 1)

i i#i

. r1 T 1T
'-Vit(x, t) = rrém[-z—x Qix t Su

N
V. (x, t)}{Ax + B.u, + Z Bj\I’j(x, t)}]
iZ

1

1.7
Vi(xf’ tf) = 5% Sifxf | (4.14)

The minimizing controls are, fori=1,...,N

T

w, = ~RIIBIV, (x,t)T
i ii i ix

(4. 15)

Substituting (4. 15) into (4.14) and guessing the following separation of

variables:
1T
Vil 1) = 5 Sy(t)x (4. 16)

one immediately verifies that (4. 16) is the solution to (4.14), where

Si(t) is the solution of




N
5 =-ATs -sA-qQ + Z s.B.RIBTs. +s.B.R BT,
i iV i i S VRt Tl Bt i it T Rt B
=1
-sBRr-IR R 18Ts)
S RS IRVt Rt s
5,(t) = S, (4.17)

This set of N coupled symmetric quadratic matrix differential equa-
tions will be called "generalized Riccati equations, " since it reduces
to the familiar Riccati equation of optimal control theory when N = 1.
The closed loop Nash costs are then given by (4. 16) evaluated at

(x ,t ).

o’ o
It is also straightforward to obtain these same results using

the closed loop variational necessary conditions (3.11)~(3.14).

It is evident from the fact that Rij (j # i) appears in (4.17) but
not in (4. 10) that the open loop and closed loop Nash controls will
be different. Even when Rij = 0, the equations are not the same.
However, in the optimal control problem (N = 1) both (4.17) and its
open loop coﬁnterpart (4.10) reduce to the well-known Riccati equation

5=-ATs -sA-0+sBrR !B s (4. 18)

Similarly, in the two-person, zero-sum LQDG, which is obtained by

setting

A
and trying a solution of the form S2 = --S1 = =S, both (4.17) and (4.10)

reduce to




f T an -1 T _ ~1. T\«
§=-A"5-5A-Q) +5(BR|1B] - B,R;3B,)S

S(tg) = 5y | (4.19)
(16)

in agreement with the results of Ho, Bryson and Baron But
excepting these two special cases, the open loop and closed loop

solutions generally do not coincide.

4.3c_ Steady state Nash solutions

If both the system and the cost parameters are time-invariant,
one often is interested only in the steady state feedback solutions.

These can be obtained by letting te—> o0, The resulting "Nash feed-

back laws" are then, fori=1,...,N
w.(x) = -R.IBTE x (4.20)
i il 7i i

" ~
where the constant matrices Sj are the solutions of the algebraic

equations obtained by equating the right side of (4.17) to zero.

4.4 Noninferior solutions

In Section 3.3 it was seen that at least part of A, the noninferior
set of solutions could be found by solving a (N - l)-parameter family
of optimal control problems. Whether or not this set § (or its closure
Q-) includes all of the noninferior solutions depends on the convexity
properties of Z, the set of cost vectors generated by all feasible
control N-tuples. Specifically, if Z is EN"-directionally convex,
that is, if any convex combination of any two points in Z is the sum

of a vector in Z and a vector in the positive orthant, then § contains A.



4-9

Unfortunately, even in the "simple" linear-quadratic case, it is not
easy to apply this test. A sufficient condition for Q to contain A is
(assuming as usual that Rii is positive definite for all i) that Qi and
Rij be positive semidefinite for all i,j. But this condition is very
strong and excludes most of the interesting cases. For example,
in the two=-person zero-sum LQDG, Z is the straight line Ty = =T,

a convex set, yet R12 = "Ry,

In any case, whether or not we can obtain all the noninferior
solutions this way, it is still worthwhile to find the set §& It may

turn out that the only "megotiable" solutions belong to some subset

of £,

For any given weighting vector p, the corresponding member

of 2is easily found by solving a linear-quadratic optimal control

problem. The controls corresponding to this solution are, for i=1,...,N
N -1
=Y T“
= = L2
U, (1) Z bR By Slex (4.21)
j=1
where
. N N N -1
S(p) = -8A - AT - Q+§ZB z R.| B'S
by = j i MRl T
' J::l i=1 J=l
X
Slatg = ) Sy (4. 22)
i=1

N
where p, 2 0,i=1,...,N, and Z by = 1. Of course, (4.21) and (4.22)
=

=
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hold only if p is such that the matrix to be inverted is positive definite.
If some of the Rij have negative roots, then there will be some
positive vectors p for which no solution exists, i.e., the scalar

cost resulting from such a weighting of the players! interests can

be driven to ~co. But such a solution would probably give at least

one player an unacceptably high cost and so would not be "negotiable."

One might wish to compute the costs incurred when the players
use arbitrary linear feedback controls of the form

u, = -Ki(t)x (4. 23)

Starting at (x,t), these costs are
1 ﬂ
J, = 5% P.x (4.24)

where Pi(t)’ i=1,...,N, satisfy the N uncoupled linear matrix

differential equations

N

P =-PA-ATP -0Q, - z (KIR, K. - P.B.K, - KIBLP,)
iT TNy i7"y TN R T At it R Tt Bl
=1

P.(tg) = S;¢ (4.25)

This formula can be used to compute the costs for the individual

players when the noninferior controls in (4.21) are implemented.

4.5 Minimax solutions

Finding the minimax control for the ith player is equivalent to
solving a 2-player zero-sum differential game, where the opponent

of the ith player chooses all but the ith control and tries to maximize




Ji. Applying the results of Section 3. 5, the minimax control for

the ith player is

% = -R'BTE.x (4.26)
1 11 1 i )
where
N
S.--5.4-aTS -qQ +5 Z B.R1BTS.
1 1 i 1 1] 31
j=1
S,(t) = S, (4.27)
provided that
R.>0 ; Rij<0, jgi, j=1,...,N (4.28)

If conditions (4.28) are not satisfied, the ith minimax control may
fail to exist, so the ith minimax cost is infinite. Note that a mini-
max control might exist for some players and fail to exist for others.
A case of interest is Rij = 0 for alli,j #i. In this special case, the

minimax control is either identically zero or does not exist.

If Player i believes the minimax assumption, his minimax
cost, or "security level' is %Xogi(to)xo' The actual costs obtained
when all players use their minimax controls in feedback form (4. 26)

can be computed using (4. 25).

4.6 Applications

As an example of a nonzero-sum LQDG, Ref. [2] considered
a generalization of a simple pursuit-evasion model, one of the best-

known models in the zero-sum differential game theory literature.




The extension to the nonzero~sum model allowed the pursuer and

evader to have cost criteria which were not entirely in conflict.

The example presented here is concerned with heating duplex
apartments at the lowest cost. While the example may seem frivo-
lous, it illustrates a case where the coupling between two physical
systems, separately controlled to achieve seemingly nonconflicting

goals, produces a differential game situation.

Example; Heating an apartment

A nonzero-sum differential game situation can occur when
several physical systems, separately controlled to achieve seemingly
nonconflicting goals, interact through their common environment.
When each controller is trying to regulate his system to keep certain
variables close to a prescribed program, then the resulting inter-

action can sometimes be adequately modeled as a linear~quadratic

differential game. To illustrate this idea, we shall consider a simple

example involving the heating of several apartments in a single building.

Each apartment in our model has its own heating s‘o'urce (a gas
heater) controlled by the tenant. The ith tenant can instantaneously
control the heat flow, u., (where uy 2 0) to maintain the temperature
of his apartment, X:5 at a comfortable level. The cost, per unit time,
of operating the heater is c.u, + %—piuiz, where the quadratic term

represents the damage done to the furnace by operating it at excessive
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levels. (Whatever the actual form of the limitation on the capacity
of the furnace, the quadratic term may be considered an approxi-

mate "penalty function" model of this limitation.)

The reference level of the temperature is chosen to be the
desired temperature (say 70°F). To simplify the model somewhat,
we assume that all tenants have the same preferred temperature.
It is then reasonable to model the ith tenant's "discomfort cost” by
a quadratic term in X, Thus, the cost criterion in our model is

t

f
_ 1 2 1 2 1
Ji = S; (Zqixi + c,u, + 2piui)dt + Zsifxi(tf)
o

2 (4.29)

Note that the various tenants' cost criteria are not coupled.

The source of conflict in this model is heat flow through walls
shared by adjoining apartments. We let the state variables in our
‘model be the temperatures, assumed uniform in any apartment.

Let xo(t) be the outdoor temperature (relative to the desired indoor
temperature), assumed to be sufficiently negative so that all heaters
will be operated at positive levels. (This assumption allows us to
ignore the constraint u, Z 0.) The temperatures of the N apartments
are then governed by the following set of N coupled linear differential

equations: -

Xi = {’,"' [“U'io(Xi = XO) = ; Ulj(xl - XJ) + ul} (4.30)
Jfi

where

Vi = heat capacity (per degree) of the ith apartment




T = heat conduction through exterior walls

o-ij = O‘ji = heat conduction through wall shared by

apartments i and j.
We may consider the heat capacity Vi to be a measure of the size of

the ith apartment.

Finally, we must gpecify the information available to the tenants.
We assume that each tenant has continuous knowledge of the tempera-

tures of all N apartments, so that closed loop controls can be used.*

We then seek closed loop Nash solutions, and, for comparison,
the set of noninferior solutions. Since there are linear terms in the
cost functions and driving terms (involving x_, the outside tempera-
ture, which is assumed known as a function of time) in the state
equations, we use the Nash solutions for the more general form of

the problem, which are given in Appendix A.** Letting

*1 0‘10/‘[1 1
x = X ’ w = U-/V X o Bi:_\-f’;ei
N No’ N

*An interesting and more realistic alternate assumption is that
each tenant can measure only his own temperature. Questions
would then arise concerning the observability of the other tem-
peratures through measurements of the ith temperature.

*%The reader may skip from this point to the paragraph following
.equation (4. 65).




(o), F Z c)'lj)/V1 e o*lN/V1
A= Jrl
oer/vN coe (o t ;\'O'Nj)/VN
L J o

where e, is the jth unit base vector, and using (A. 3)-(A. 7), the

closed loop Nash cost functions are

1 T T
Vi(x,t) = 5% Si(t)x + ‘g"i(t) x + ni(t) | (4.31)
and the closed loop Nash éontrols are
T T
¥ (x,t) = -(B; S;x + B &, + ci)/vi (4.32)
where the NxN symmetric matrix Si’ the N-vector Ei’ and the scalar

n; are solutions of

oo AT T T
S, =-S;A-A"S -qee” +5B.B, Si/pi

T T
+ 5.B.B.S. +S5.B.B. S, .
Z.(lJJJ JJJl)/PJ
JFi

5,(t]) = 5, 0,00 (4.33)

- T 1 T T

= -(AT - Z — S.B.B.)E -S.w+ ) S.B.B.E./p.

§ = P iP5 28 7 5w Z B35 £3/P;
J7F

£.(t) =0 (4. 34)
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. Tp (2 T T LT
J#i

ny(t) = 0 (4.35)

The set of noninferior solutions to this problem can be obtained

by solving a set of scalar optimal control problems of the form:

Choose Upy oo, Uy to minimize
te
1 = 15T + o Mo+ FuTRGaIaE + xS G
o (4. 36)

subject to
X=Ax+Bu+tw (4.37)
where p. is the usual positive weighting vector and

T

B:[Bl"""BN] , u =[u1,...,uN]

Q) = diagonal matrix whose diagonal elements are Byys e sty
R(p) = diagonal matrix whose diagonal elements are BqPysee e s by
Sf(u) = diagonal matrix whose diagonal elements are

PiS1p o MNONg

T _
c{n) ™ = [ulcl, ceny MNCN]
Since any optimal control problem is a special case of a differential

game, the solution to (4. 36), (4.37) can also be obtained from Appendix A

a) = -Rw) " BTSx + BTER) + c(w)] (4.38)
where

= T ~1.T B

S(p) = “SA - A"S - Q(p) + SBR(p) BS, S(p,ty) = Si) (4.39)



~ Ta 1, T=

E(R) = ~ATE + S()BR(p) [BTE + c(p)] - Sw

E(n, t,) = 0 (4.40)
The noninferior control for the it® tenant is, from (4. 58)

G (w) = ~(&, +5.x)/up, V. - c./p, (4.41)
(where éi denotes the ith row of é). The costs for the individual
tenants corresponding to these noninferior solutions can be computed

by applying (A.12)-(A.15). After some manipulation, the cost for the

i h tenant is found to be

P’ 1 -~
‘Ti(P"X t )— EX (M, Oxo-l‘q(u,t ) X, + 7, (}L,t ) (4.42)

where
oy

A _ t - ~ Ta o~ -~
P. = -A Pi PA-qlt Z (SJ.BJ.Bj P, + PlBJBJSJ /u P
j

/u

P (1, t) = S;(t) (4.43)

111

g=-aT - ZSJBJBJ/MP)CL +8.B.c./up, - Pw
j

+ ) P.B.(c. + BYE. /.
z iBsle; JEJ/MJ)/P

j

J

g, (e, tg) = 0 (4.44)



5 ,,T . T T b, LT 2
J

Fp,ty) = ‘ (4.45)

The set of formulas (4.32)~(4.45) will give the controls and cos%;s
for the closed loop Nash solutions and for the set of all noninferior
solutions for any configuration of apartments. However, they are
far too cumbersome to ha%re any intuitive appeal. We shall demon-~
strate their use by computing the solutions to a specific model involving
two apartments of unequal size, with different heat conduction to the

outside and different "comfort criteria for the tenants.

Specific example:

When there are two apartments, our model reduces to

t
f
B 1 2 1 2
J‘1 = S; , (*quxl + uy + —Z—plul)dt
o
r (e e u + Lpadia
2= ), (5%, +u, + 5p,u,)
o
1o o
=y, BT x) e v, (2 = x5) =0y /Vy
. 20
Xy = “WVZ (xz - XO) - Vz (x - xl) - u.z/V2

where ¢ = ¢,, = 6,,, and where the costs are measured in units such

that the "fuel prices™ ¢y and c, are unity. We have omitted the terminal
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cost terms because we intend to take te sufficiently large that the
terminal costs would have a negligible effect on the solutions during
most of the interval of play. In other words, we shall seek steady-

state (but not necessarily constant) solutions.

The inhomogeneous terms in our state equation represent the

outdoor temperature xo(t), measured with respect to the desired indoor !

temperature. A reasonable choice for the outdoor temperature might be

xo(t) = =~y - zcos(2Tt)

where x > z ® 0, and where time is in days, measured from the time
of day when the temperature is lowest. A general program has been
written to compute the closed loop Nash solutions and the noninferior
solutions for any set of parameters, by integrating eqs. (4. 33)-(4. 35)
and (4. 38)-(4.45). However, it has been observed that no interesting
effects arise from the presence of the periodic driving term, and the
results are much more easily presented when the outdoor temperature

is constant.

Since there are nine parameters even when the outdoor tempera=-
ture is constant, it would obviously be impractical to illustrate the
dependence of the solutions on each of the parameters. Instead, we

shall present solutions for two values of one of the parameters, the

first tenant's "comfort parameter" q;, holding the remaining parameters

at the following values:
x = -40°
o
V=0, [V, =4

o/V, = o/V, = 10

0'lo

Plsz:'l

q_z:3
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For the completely symmetric case, qp = 3, the equicost con-
tours for the two tenants are plotted in the control space in Fig. 4.1,
The dashed lines give the loci of rational solutions for the two players;
their intersection is the Nash solution. The dotted curve gives part
of the set of noninferior solutions (it extends to the centers of the sets
of elliptical cost contours, which lie at (-10, 398) and (398, ~10) for
Playefs 1 and 2, respectively). At various points on this curve, the
weighting p on Player 1 is indicated. Note that, as usual, something
must be sacrificed to obtain the security of the Nash solution. The
shaded region indicates those solutions which dominate the Nash solu-
tion. They correspond to weightings .4589 <p < .5411. In particular,
if each player plays the cooperative solution corresponding to equal

weighting, each player's cost is 7% less than his Nash cost.

u =
2 s
-1
]
"‘)r““
Jz = 1514
1007
100
501
0 ¢ ¥ -3 A
0 100 200 uy

Fig. 4.1. Cost contours for the symmetric apartment heating problem
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If we now lower 9 from 3 to 1, we should expect Player 1 to
use less heat, since he is now willing to tolerate a lower temperature.
Player 2 will then lose more heat through the dividing wall, and he
will partially compensate this by operating his heater at a higher
level. The resulting situation is shown in Fig. 4.2. Again, there
are solutions (shaded region) which dorninate‘&the.Nash solution, but
the noninferior solution with equal weights on the two i)layers is not
one of them. ‘The noninferior solutions whicl; dominate the Nash
solution have weightings in the range . 6391 < €|.L <.,7116. The non-
inferior solution with weighting . 672 gives each player a cost which

is 6% below his Nash cost.

100

0 100 200 uy

Fig. 4.2. Cost contours when first tenant places a lower penalty
on discomfort.
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It is also easy to find the risk involved in piaying a noninferior
solution, as well as the advantage to be gained by "cheating." Suppose,
for example, that Player 2 cheats while Player 1 uses a noninferior
control. Since Player 2 will try to optimize, the resul‘;ing solution
will lie on the dashed line giving Player 2's rational solutions, at a
point directly below the "nominal" noninferior point. The resulting
costs {which can be computed by interpolation) can then be compared
with the Nash costs. Note that if, in Fig. 4.1, a noninferior solution
with equal weighting is agreed upon, and then both players cheat (each
believing the other will not cheat) the result is worse for both players

than the Nash solution.




CHAPTER V

COMPUTATION OF NASH EQUILIBRIA

5.1 Introduction

This chapter coﬁsiders the problem of computing Nash equili-
brium solutions, both open loop and closed loop, for general nonlinear
differential games.* In Chapter IV we saw that when the system is
linear, the cost criteria are all quadratic functions of the control and
state variables, and there are no inequality constraints, then both
kinds of Nash solutions can easily be obtained by integrating ordinary
differential equations. Unfortunately, as can be seen from the
examples given in Chapter VIII, most of the interesting applications
of differential games cannot even be approximately modeled by the
LODG. Before differential games can be used to analyse realistic
situations of "imperfect competition," numerical methods are needed
for computing various kinds of solutions for a more general class of

problems.

In Chapter III we have seen that the set of noninferior solutions,
or at least part of it, can be obtained by solving a family of optimal
control problems. The minimax solutions can be found by solving N
two-person zero-sum differential games. Solving a deterministic two-
person zero-sum differential game is very similar to solving an optimal
control problem. Of the solutions we have considered in the previous

chapters, only the Nash solution cannot be obtained by solving one or

*The only "result" in this chapter is contained in Section 5.4. The general
procedures described briefly in Sections 5.2 and 5. 3 have not been imple-
mented. They are included because they are conceptually useful as a
background for considering more efficient computational methods.
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more optimal control problems. This is the reason for giving it

special attention in this chapter.

There are many optimal control problems which are too diffi-
cult to be solved in a reasonable time by any known numerical methods.
For each of these problems, a differential game with a similar mathe~-
matical structure could be constructed, but we would not expect much
success in analyzing such a game. Hence, we restrict our attention to
differential games where the optimal control problem with the same
structure can be solved by some practical method. This means that
we shall always be considering problems where the part of the nonin-
ferior set which can be obtained by "scalarization," as well as the
minimax solutions (if they exist), can be found by available numerical

techniques.

In devising algorithms to solve optimal control problems, one
need not distinguish between the open loop and closed loop cases, since
(in deterministic problems) both assumptions lead to the same trajec-
tories. But we h‘ave seen in Chapter III that in the nonzero-sum differen-
tial game entirely different solutions follow from the two alternative
assumptions. Thus, in designing an algorithm for computing open loop
Nash solutions, one must be careful to avoid using "closed loop ideas."
Each player's control must optimize his coét, considering the other
players' controls as fixed functions of time only. Conversely, the
computation of each player's closed loop Nash control must correctly

take account of the state dependence of the other players' controls.
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The reader should be warned that the results in this chapter
are discouraging. It appears that computational methods which have
been successful in optimal control theory cannot readily be extended
to find Nash solutions of differential games. The difficulties arise

because one player's cost is neither minimized nor maximized with

respect to another player's control when the game is nonzero-sum.

The next section describes a naive iterative method for computing
either kind of Nash solution. If the procedure converges, the solutions
have the desired Nash property, but there is no guarantee, and little

reason to hope, that the method converges.

Section 5. 3 describes the extension of the well-known dynamic
programming idea. While it provides a conceptual method for finding
closed loop Nash solutions without iteration, the same difficulties
which make it impractical for most optimal control problems arise -=

plus one additional difficulty.

Section 5.4 describes the extension of one of the most successful
"second order" methods of optimal control theory, and shows that this

approach == surprisingly == fails in the nonzero-sum differential game.

5.2 The "cycling" method

The definition of the Nash solution requires that each player's
control function shall be optimized against the other players' control
functions. This suggests the following simple iterative procedure:
1. Start by guessing control functions for players 2,...,N, and

seti=1,
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2. Using an available optimal control algorithm, compute the
optimal control for the ith player, using the most recently
computed control functions for the other players.

3. If the most recent computation for each player produced no
change in his control function, stop. Otherwise, replace i
by ifmod N} + 1, and return to step 2.

If this "cycling" procedure converges, the resulting solution will

satisfy the definition of the Nash equilibrium. In principle, it could

be used for either open loop or closed loop controls, but it seems

rather impractical to compute and store a complete closed loop control

function at each step in the algorithm. Thus, the method appears better
suited for computing open loop controls.

The result of one "cycle" of this algorithm can be viewed as a
mapping from the set of functions [uék), ceny ul(\l;)

[u(2k+1), e ,ug“-i‘l)] (where k denotes the kth cycle). The algorithm will

] to the set of functions

converge if this mapping is a contraction on the space of feasible stra-
tegy N-tuples. The Nash equilibrium N-tuple is the fixed point of this
contraction. However, there is generally no simple test for determining
if the mapping is a contraction, since the function giving the mapping is
not available in explicit form. (One evaluation of this function requires

solving N optimal control problems. )

One expects that the cycling method will succeed on some problems
and fail on others. In some differential games, the success of the pro=
cedure may depend on the ordering of the players in the cycle. Conver-

gence, if it occurs, may be slow, since near the Nash equilibrium each




player's cost is insensitive to his own control but sensitive to the

other players' controls.

5.3 Closed loop Nash controls via dynamic programming

This section describes briefly the extension of the well~-known
idea of dynamic programming to the problem of computing Nash solu-

tions to differential games.

Let "DG" denote the usual differential game, where player

i{(i=1,...,N) chooses a closed loop control function ui(x, t) to minimize
E:
J, = g; Li(x, tugdx,t), ... ,uN(x,t))dt + Ki(x(tf)) (5.1)
o
subject to
k= (%, t,ul(x,t), . e ,uN(x, t)) , x(to) =X (5.2)
w(x,t) € U(x,t) forall te [to’tf] (5.3)

where the terminal time tf is fixed.

Corresponding to DG, let "MG(K)" denote the multistage game
obtained by dividing the interval [to, tf] into K equal parts* and requiring
that the players use piecewise constant controls, with discontinuities
occurring only at times %{(tf - to), k=0,...,(K-1). In MG(K), player
i chooses ui(x, k) to minimize

K-1

= Z Li (e, Ty uy (3, K, -y g, K)o+ K () (5. 4)
k=0 |

e
i

subject to

#The reader familiar with dynamic programming may skip to the middle
of page 5-7.
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K
x(k + 1) = x(k) + F(x(k), k, uy (x(k), k), . . ., upx(k), k))
k=0,...,K-1
x(0) = % u,{x, k) € UK(V o) | e
o’ EANE A i v =

where the functions L‘;{ and FK are obtained from Li and fin (5.1) and

(5.2) by

e

“k

It 1
K (5!

L.l[y(t), t, ul(x(k), k), ... ,uN(x(k), k)ldt (5.
k
—K(tf_to)
kt+1
K M)

ffy(t), t, ul(x(k), k)y ..., uN(x(k), k)]at (5.
K (tfuto)

where y{(t) is the solution of

jr': f[Ya t, ul(X(k), k)) ey uN(x(k), k)]

v(

k.
R

(g = £_)) = (k) | (5.

For any positive integer K, the idea of closed loop Nash controls for

the multistage game MG(K) is well-defined. The value functions

V?(x(k), k), i =1,...,N, are the remaining part of the sum in (5. 4)

starting at stage k, when all players use closed loop Nash controls.

They satisfy the following difference equation:

K .
V(% k) = mln{L]iK[x + FK(x, Ky uf(x, k), . .o,u, .. ,u’&(x, k)),

K

1
u,
1

Iy wf (o, k)y v ey uyy e Uk k)]

K K 3
+VIx o+ Fo(x, Iy ui(x, k), ey 0y, ,u’lfl(x, k)),

Vi (x, K) = K, () (5.

. 5)

kt+1

9)
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where u’f‘(xﬁ k), i=1,...,N, is the control which achieves the minimum
in (5.9). Since the N value functions are given for all x at the terminal
stage K, the N coupled nonlinear difference equations (5.9) can be

solved for all x, for k = 1,..., K, provided that the "static Nash point"

of the function in the brackets in (5. 9) can be found.

To construct an algorithm based on (5.9), one requires that
the function ViK(x, k) be represented approximately by some finite set
of numbers. The usual procedure in dynamic programming is to com-=
pute V?(x, k) only at points on a grid in x-space. In computing ViK(x, k=~1)
on the same grid, one either only considers controls at stage k - 1
which lead to an exact grid point at stage k, or one obtains ViK(x, k)

at nongrid points by linear interpolation.

Even in optimal control problems (N = 1) it is very difficult to
obtain acceptable results by dynamic programming, especially if the
dimension of x is greater than 2. The "curse of dimensionality® is
even worse in the game MG(K), because (i) N value fuﬁctions must be
stored instead of one, and (ii) finding the Nash point of a vector function
is more complicated than finding the minimum of a scalar function. In
fact, if one represents a scalar function by a set of values given at
points of a finite grid, then no matter how coarse the grid, this set
of values will always have a minimum. But if an N-dimensional function
of N control variables is represented by a finite set of values, it is
possible that this array will have no Nash point even when the function
itself does have a Nash point. Too coarse an approximation of the value
functions may thus not only cause inaccuracy but may actually lead us to

the erroneous conclusion that no Nash solution exists for our problem.
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Even if an accurate solution to MG(K) could be obtained, it
may be hard to prove that the solution to MG(K) approaches the solu~
tion to DG as K~» . However, in practical applications, decisions
are not really made continuously, and a multistage modél may be more

appropriate than a continuous differential game model.

5.4 A second order approach to the computation of closed loop Nash

controls

In this section, an attempt is made to construct a computationally
efficient method for finding closed loop Nash controls by generalizing
a method which has succeeded in solving a wide class of nonlinear optimal
control problems. Unfortunately, the conclusion of this section will be |
that this type of approach cannot be used to compute Nash solutions of
nonzero~-sum differential games. Although this negative result is dis~
appoiﬁting, the reason for the failure of the method gives some insight

about the nature of general differential games.

The dynamic programming approach described in the previous
section is general enough to be applicable to almost any problem, but
it is not practical to use this method except for very low~dimensional
problems because of the enormous amount of computation involved.
There are two features shared by many practical optimal control problems
(as well as by most differential game models) which the dynamic program-
ming method fails to exploit:
(i) The functions appearing in the system equations and the cost

criteria are continuous and differentiable in all their arguments.
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(i) One does not need a solution for all points in the state-time
space, but only along a trajectory through a specified initial
point. (Plus, possibly, linear "correction" terms valid in a
neighborhood of this trajectory.)
In optimal control theory, efficient iterative methods have been developed
which exploit these two features by expanding the optimal cost sur:faces
around a nominal trajectory through the given initial point. A linear
correction to the control is then computed to minimize the dominant
terms in this expansion, and a new nominal trajectory through the same
initial point is computed. An algorithm of this type is called "second
order" if all the second order terms are included in the expansion of

the function which is minimized by the control corrections.

One of the most successful of the second order techniques of
optimal control theory is the "differential dynamic programming® (DDP)

( 14.-, 17 ) The DDE: ‘approach is

method of Jacobson and Mayne.
especially appropriate for our purpose because it is based on an expan-
sion of the Hamilton-Jacobi equation and is thus a purely "closed loop®
method. We have already seen in Chapter III that in nonzero-sum

differential games (unlike optimal control problems) one cannot use

closed loop and open loop arguments interchangeably.

The DDP method (and its extension to differential games) is
most easily described if we restrict our attention to nonsingular problems
(defined below) with no inequality constraints. Jacobson also extended

the method to cover optimal control problems with control variable

(14)

inequality constraints , and, more recently, extended it to singular

(18) (19)

problems hang-bang" problems , and problems with inequality
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(zo)_

constraints involving the state variables These extensions would
be important in analyzing differential games, but we need not consider
them here. The simple unconstrained, nonsingular case is enough to

demonstrate the idea of the method as well as the reason for its future.

5.5 Description of the extended DDP algorithm

We are seeking an iterative procedure for finding the closed
loop Nash controls to the differential game "DG" described by (5. 1)
and (5.2), with no constraints of the form (5. 3). We are mainly inter=

)

although if possible we would also like to compute the local expansion

ested in the Nash trajectory passing through the initial point (xo, ty

of the closed loop Nash controls about this trajectory.

Liet the exact closed loop Nash value function for the ~ith player
be denoted V;’(x, t). (We use the superscript to distinguish the exact
function from approximate functions based on expansions.) Let the
closed loop Nash controls be \I’?(x, t), i=1,...,N. Then the value func-
tions must satisfy the generalized Hamilton-Jacobi-Bellman equation:

fori=1,...,N

ov?e
- atl = min[L,(x,t,9](x,t), . .., 05, . . . ,\I!;I(x, t))
Y
+ V7 (%, t)ix, t, T (%, £, eyt , T(x, £))]
e
VI, t) = B(x, t) (5.10)

where \I/ie(x, t) is the u, which achieves the global minimum. Define
the vector Hamiltonian H as the N-vector whose ith component is the

function
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e
Hi(x’t’u1’° V. )= Li(x,t Ujyeeeyll

U Vix ’ ‘ N)

VI ix, 0,0 (5.11)

N)
. e e
Letting VX = [le, -

Ve), and the operation in (5. 10) then is to find the
X

. VIe\Ix]’ we write H as the vector function
H(x,t,u;,... » Upps
(static) Nash point of H.

In order to concentrate on the simplest case, we now make the

following two assumptions: given any arbitrary x, t, and Vz,

(i) 1f (uT, e ,u’l‘;) is a Nash point of H(x, t, Upyeeey Upy Vi), then
Hiu.u.(x’ ZRSTRERFRCINY fo) is positive definite for i = 1,...,N.
ii

This is the nonsingularity condition.

(ii) There is not more than one Nash point of H.

Note that (since the minimization in (5.10) is global) condition (ii) would
be implied by condition (i) in an optimal control problem. But a nonzero-
sum game can have two distinct Nash points, with different costs, even

though all the minimizations are global.

Now let Vx(x, t) = {le(x, t)y, ..., VNX(X, t)} be any N-tuple of
n-dimensional vector functions (our algorithm will furnish an approxima-

tion to V}e{, but at this point Vx is considered arbitrary). Let
W, t, V) = [0t V), ., w8, V)] (5.12)

be the N-tuple of control vectors which gives the Nash point of

H(x, t,u VX) whereever the Nash point exists. (By assumption

1o Uy

(ii), the Nash point is unique if it exists.) Since there are no control

inequality constraints,
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oH.
a—i(x,t,u’f,...,ui\f\l,vix) =0 for i=1,...,Nand for all x,t
i

(5.13)

Let x(t) be any arbitrary given "nominal trajectory. it We now
expand the unknown Nash cost functions Vf(x, t) around this nominal
path:
Vie(;. + Ox, t) = Vie(?c', t) + Viex(SE, t)6x + %6XTfox(§’ t)0x + ...
(5.14)
It is also convenient (although not necessary) at this point to define
aie(x, t) as the difference between the true Nash cost for the ith player

and the "nominal cost," starting from (x,t):
e = €
a; (x,t) B v, (x,t) - Vi(x, t)

Henceforth, Hi’ f, and all their partial derivatives in the expansions

to follow will be evaluated at §(t), t, uT(t), ey u’I{;I(t), VX(;, t) unless other

arguments are given explicitly.

Usingj approximations a;s vix’ and Vixx (to be furnished along

the nominal path bykthe algorithm) for a?(;c(t), t), v?e

1x(;{(t)5 t), and

Viexx(;(t)’t)’ respectively, and substituting (5. 13) into (5.10) gives:
1. T
Vie " a5 " V0% - 30x TV, 0x

= min[Li(-;Z + 0x, t, uy + 5111, ce e u’& + ﬁuN)

Ou,
i
T 1. T 0x - % &
+ (Vix + O0x Vixx t 5 Ox Vixxx)f(x + 0x, t,uy + 5111, cesy U
+ 6uN)] (5.15)
+4Later, we shall denote by GI’ cee ’EN the set of controls which generates

this Ynominal® path.
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0
where 6XTVi;{xx denotes the row vector whose jth component is

ks m 63Vi
Z z Ox0x -—-—'——E——I‘E , etc.
Bx‘]ax 0x

k m
Note that, to retain all second order terms in the expansion, we must

expand Vi to third order.

We now expand the right side of (5.15) around x,t, uT, cee, u*li], .

to second order:

min [H, + ZH u, + H, Ox + £V, Ox +Z Sul(H, +£frV. )0x
i iu, j ix ixx j YV Hux CoTu,ixx

b0k (H, 4LV, +V, £ +V  )0x
1XX ¥ 1XX IXX X 1XXX
+ higher order terms] (5.16)

~ where, to simplify the algebra somewhat, we have made the assumption
that

gy =0 for jfk
ik
v,
—L

Note again our notation: V.f is the n X n matrix Z :
ixxx O

j
We now assume an approximate relation between ﬁui and 0x of
the form

_ 1 x
5ui = ﬁiéx-l- Zri 0x ; (5.18)

where ﬁi isam, xn matrix and Pi isam,xnxn tensor whose meaning

should by now be clear.
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Differentiating (5. 16) by Gui to obtain the minimum, the first
order terms are

bu = ~H[L (B +ETV.)0x 4 o(0x7) (5.19)

i iv.u, ' iu,
i’i i i
so we must have

| T
B, = Hiuiui(Hiuix IV, ) (5. 20)

If one carries out the expansion (5.16) through all third order
terms, then differentiates and substitutes for 5ui using (5.18) and (5. 20),

one finds by collecting all the second order terms that

1 -1 1 {31 1. T
ip - - L L
271 ig.u ( iu.u x@1 2 iuixx ZHiuiuiuiﬁi * 2u, imwx
TB.
+ %fT V., +£f *v. ) (5.21)
m.X 1XX u.u 1XX

Using these results for B. and I',, and collecting like-order
i i’

terms in Ox in (5.15), one obtains, for i = 1,...,N,
“Vie "% T (3.22)
S ; H B +H_+fV, (5. 23)
ixt 1uj J ix ixx
J#Fi

_ T T T
Vixxt - Hiu.rj +2 Zﬁj (Hiu.x * Jc‘u.Vi:x::x;) * Z ﬂj Hiu.u.ﬁ'j
il J j J J j J ]

vH +£v.  wv, g+ vi (5. 24)

iz Tm o ixx ixx ixxx
Now since V., a., V., , and V., _ are functions of x and t, their total
1 1 1x 1XX
time derivatives along the nominal trajectory are

d [— v o o
L = A
T (Vi + ai) Viv. + a,, + Vin(x, t,u (5.25)

RN
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T Vix = Vixt + Vixxf(x’ Eyuyy ey uN) (5. 26)
Ly, -v. +V. =t ) (5.27)
dt "ixx ixxt ixxx 7P LY TN )

Taking the symmetric part of (5. 24) (since V.1XX must be symmetric),

eqs. (5.22)-(5.27) give (using Li = --c% Vi)

-é,i = Hi - Hi(x, t, Uyy ey Unp Vix)

ai(xf, tf) =0

(5. 28)
o T T~ — —~
Vix = Hix + (£ 7 (x,t, Upyeony uN))ViXX
-S> mlt owm +Tv. )
i, ju,u, U ju.x | u, o jxx
b/ TR i B j
V. (Gt = K (%) (5.29)
_ T
. =H V. £ 44V,
1IXX 1IXX X X X  A1XX

¥ > . o+ 5 v, )Tet o omwt m vt
ju.x © a, jxx’ Cjusu,iuu, juLu, U julx o Tul o jxx
j S A e T e R j

- Z[(I—I. sty 3 Tatt wm s ftv, )
ju.x u,  jxx ju.u, U iu,x u.
; j j it T j

R O L N N2 SO LR Y
1uJ.X u, ixx ju.u, U ju.x 0 Tu, o jxx

j I I

PV, M-ty )

+ symmetric part of 2 Hiu.rj
j#L
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(xpty) = () (5.30

A K.
ixx ixx

where Pi is given by (5.21).

Note that the next~to-last term in (5. 30), which contains V,

ixxx’

would vanish if the nominal trajectory were the actual Nash trajectory,

since then ('{1-1, oo ,EN) would equal (u¥, ... ’u§)' Thus ignoring this

term would not invalidate the result, as long as the algorithm con-
verges. Unfortunately, Vi xy 2180 contributes to Fi (see (5.21))

which appears in the last term in (5. 30), and in this case the contri-
bution of vixxx does not vanish even if the nominal trajectory is the

Nash trajectory. Ignoring the last term (or the part of it involving Vixxx)

would thus completely invalidate (5. 30). Since the ijx for all j £ i

do not vanish from (5.29) on the Nash trajectory, (5.29) will not yield

sk

N

not minimize the correct Nash Hamiltonian.

the correct V., , and the controls wt oL, u computed via (5. 14) will
ix 1 ’

This difficulty could be eliminated if we had some way to compute |
vixxx for all i, by some approximation which became exact on the true
Nash path. If Vixxx were available, then the process described above
could be repeated, using as the new nominal trajectory the path obtained
by integrating the state equation from (xo,to), using the controls

u! = vt + B,0x : {5.31)
i i i

where 0x = x! - x is found by integrating from (xo,to)
X! = f(x',t,u{, ce ’ul'\I)
éx(to) =0 (5.32)

It is straightforward to verify that, if this iterative procedure converges
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(still assuming the correct Vixxx is somehow included in (5. 30}),
then the solution will be the closed loop Nash solution satisfying

(5.14).

Unfortunately, to obtain an equation for Vixxx one must expand

(5.15) to include all third order terms. The resulting differential
equation for Vixxx will then contain nonnegligible terms involving

P and so forth. Unless the problem has the special property
that the kth partial derivative of V.le(x, t) vanishes, for all x, t, and i,
for some finite k, the method will fail to produce the correct trajec-
tory no matter how high the order of our expansions. Thus the DDP
method apparently cannot be extended to find Nash closed loop solutions,
and clearly the same difficulty would occur with any other iterative
method based on "local" expansions of the Hamilton=Jacobi equation
or of the variational necessary conditions. This is a remarkable
property of the nonzero-sum differential game, and is a consequence

o0H,

of the fact that, for i £ s —t 7-‘ 0 at the Nash point.

ou,
J

There are several special cases where the difficulty described
above does not occur, so that the algorithm succeeds:

(1) The optimal control problem (N = 1). The summation in the

last term in (5.30) has N - 1 terms and thus is absent. The
method then reduces exactly to Jacobson's DDP.

(2) The two-person, zero-sum differential game. Here it is easy

to show that H; = -H,, so that, since Hlu = 0, we also have
1

Hlu = 0. Thus the last term in (5. 30) vanishes, and the
2
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algorithm succeeds. In fact, since V‘f = "Vz, eqs. (5.28)~(5.30)
can be simplified considerably, so that they very closely re-
semble the corresponding equations for the DDP method.

(3) The linear-quadratic problem (see Section 4. 3b). This is a

case where Vixxx is identically zero, and (5. 30) then reduces
to (4.17). While this is reassuring, it is of little help since

we already know how to solve the linear-quadratic differential

game.
(4) The identical goal game, where all players have the same cost
criteria. Since H, = ... = H H. = 0implies H, = 0 for all
1 N iu, iu,

j, and the last term in (5. 30) vanishes. This problem can be
reduced to an optimal control problem and solved via DDP.

(5) The differential game which can be decomposed into N subproblems

which are not coupled in the state equations nor in the cost
criteria. This is not really a game but only N separate optimal
control problems.

(6) The "ordered! differential game, where the players can be

numbered so that the ith player is concerned with the controls
used by players 1 through (i = 1) but not with the controls of
players (i + 1) through N. This can be solved as an ordered

sequence of optimal control problems.

It is important to note that simply using the algorithm described
above, omitting the terms involving the unavailable Vixxx’ will not in
any acceptable sense produce an "approximate Nash solution for the

general nonlinear case.
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It also appears that "bootstrap" procedures for generating an
approximation either to Vixxx or to Fi’ based on computing several
neighboring trajectories and numerically differentiating, are doomed
to failure. Careful examination of such proposals reveals that they
are based on using the same Vixx on the set of neighboring paths,

which is equivalent to assuming V, = 0.%
1XXX

Thus the prospects for developing an efficient computational
algorithm for Nash solutions appear rather poor. In the next chai)ter,
some special cases (not quite so special as the six listed above) are
presented for which approximate Nash solutions can be obtained, using

ideas introduced in this section.

*This fault was pointed out by D. Jacobson (private communication).




CHAPTER VI

APPROXIMATE NASH SOLUTIONS FOR SOME SPECIAL CASES

6.1 Introduction

In the previous chapter, we concluded that there apparently
was no computationally efficient method for computing closed loop
Nash equilibrium trajectories through a given initial point for a general
nonzero-sum differential game. However, at the end of Section 5. 4,
six special degenerate cases were given in which the closed loop Nash
solutions could be computed efficiently by known methods such as
Jacobson's differential dynamic programming (DDP)(14). The first
case, the optimal control problem, does not interest us, since we
are concerned with games with two or more players. The remaining
five special cases were:

(i) The two-person zero-sum differential game, where the cost

criteria Jl and J'z have the property that there exists some
strictly monotone transformation g such that g(Jz) = -Jl for
all feasible strategy pairs.

(ii) The identical goal differential game (the "perfectly cooperative®

case) where (after appropriate monotonically increasing trans-
formations) the cost criteria of the N players are identical.

(ii1) The uncoupled differential game, which can be decomposed

into N separate and unrelated optimal control problems.

(iv) The Yordered? differential game, where the players can be

ordered so that each player is influenced by the players ahead




of him in the ordering, but not by the players behind him.
{(This includes (iv) as a special case.) This can be solved as
a sequence of control problems, using the controls for the

first (i - 1) players as inputs to the i.th player's system.

(v) The linear-quadratic differential game, whicvh is easily solved

without iteration by the results of Section 4. 3b.

The purpose of this chapter is to consider differential game
models where the formulation involves a "small" pararﬁeter €, such
that, if € = 0, the model reduces to one of the five special cases listed
above. The "nominal" solution (for € = 0) will be assumed to have
been found for some fixed initial point. Certain other quantities, such
as various partial derivatives of the Nash cost functions and of the
Hamiltonians will be assumed known along the nominal path. (These
would be provided as byproducts of a DDP computation of the nominal
path.) We shall then develop the closed loop Nash solution as Taylor
series expansions in €, and an algorithm will be derived which will com~-
pute exactly the first order terms in these expansions. By dropping
the higher order terms (which are not provided by the algorithm) we
will then obtain an approximate solution with an error proportional to
62. The actual range for which this approximation is acceptable will
depend on the details of the example under consideration. However,
as a general indication of the magnitude of the error, the second order
term in the expansion of the cost functions can be obtained, without too

much additional computation, at the initial time.

Since the basic idea of this type of approximation is the same

for games which "almost" satisfy any of the five conditions listed above,




a detailed derivation of the method will only be given for the "almost
zero-sum" differential game. For the other four cases, only the

problem statements and the results will be given.

It will be assumed in the following sections that there are no
inequality constraints of any kind, and that all the partial derivatives
required in the method exist. The idea can probably be extended to
problems with certain simple types of inequality constraints (such as
control constraints) but considerable complexity would be added, since
the expansién in € would not be valid at Yentry" or “exit" points (times

at which the number of active constraints changes).

6.2 The "almost zero-sum" differential game

If J, and J, are the cost functions for a 2-player differential

game, then they can always be written in the form

T =1 et J+=-2-1-Ef(J1+J2)»
i.e., (6.1)
J,= -3 +er’ 3T =t, -7
2 50y =7,

If nearly all the costs come from the J° term, we shall say the game
is "almost zero=-sum." We may then consider J+ and J to be of the

same order of magnitude, so that the constant parameter € is "small."

We then seek an approximate method for finding the closed loop

Nash solutions to the problem:*

*It is not actually necessary that the coefficients of € in Jy and J, be
the same (we could have L; and LZ) but we forgo this slightly more

general formulation in favor of less cumbersome notation.
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Choose u,(x,t) to minimize

t

i
= + -
Jy = S\ [L (x, tyuy,u,) + el (x,t, ul,uz)]dt + K (xf)
to
+
+ €K (xf) {6.2)
and choose uz(x, t) to minimize
t
f - + -
J, = § [-L (x, t,ul,uz) + €L (x, t,ul,uz)]dt - K (xf)
to
+
+ eK (xf) » (6. 3)
both subject‘to
X = f(x,t,ul,uz) s x(to) =x (6.4)

Let \Ifi‘(x,t, €) and \Ifg(x, t, €) denote the exact Nash closed loop control
fields, and let VI(X’ t, €) and Vz(x, t, €) denote the corresponding "Nash
remaining cost" functions. Since the problem reduces to a zero=-sum .
game when € = 0, it follows that

V) (x,t,0) = =V, (x,t,0) = V(x,t) (6. 5)

1
Suppose the nominal problem (€ = 0) had been solved for all x,t. Then
we could find an approximate solution for small € by expanding the

generalized Bellman equations

o - ¥
-Vlt(x, t, €) = min[L (x, t,ul,\lfg) + el (x, t,ul,\lf;)
u
i

tV x, t, €)i(x, t,uy, 05)]

: - ; + ~
V. (%, t, €) = min[-L (x,t,¥],u,) + €L’ (x, t, ¥, u,)
u
2

Vo (%, t, €)ilx, t, \Iii‘, us,)]

- +
Vl(Xf’ te €)= K (xf) + eK (xf)

Vol ty, €) = <K () + €K' (x,) (6. 6)
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(where \lf‘f(x, t, €) and \Iig(x,t, €) are the controls uy and u, which achieve
the required minima) in a series in € around the nominal field, treating
both x and t as independent variables. The practical difficulty with
this conceptually clear approach is that the nominal solution would
ordinarily be available only along a single nominal trajectory (the one

through X5 to) and not in the entire x, t-space.

To avoid having to fill the entire x,t-space with nominal tra=-
jectories, we proceed by expanding all functions around the nominal
trajectory x(t) through the given initial point X sto, as follows:

x(t, €) = X(t) + €€ + 3670 + ... (6.7)

Vil t, €) = Vix(t), ) + (V) (x,t) + V_E)

2,1 1 1.T
te (EV1€€+EVXG+V1€XE+E§ Vxxg)
+ ... (6. 8)
Vo, t, €)= -V +eV, -V E+eX2v, -ive+rv, &
2V 2¢e X 2 2ee 2 x Zex
1.T
—Z'E VXXE) + ... (6.9)
u) = (x(t), t) + €(w) + ¥ _E) =¥ + ev,
(6.10)
u, = \yz(;(t),t) toe(w, + U, E) =¥, + ev,
V. (x,t,€) =V_+ &V, +V_E) + €5V, __+2V_ 8
Ix' ™™ x lex XX 2 leex 2 xx
1.T
= 6.11
FV) T SE Y 8 (6.11)

etc.
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where all functions, unless otherwise specified, are evaluated on the

nominal trajectory. The first order terms in the expansion of (6. 6)

are then
) N T R - +
Viet Vtx'g" —m1n[LX+ L,ovitL vy, +L
vy 1 2
SV (EEVE vi+f vo)H+ (V. +ETV )]
X' x u; 1 u, 2 lex XX

1 2

- _ . S e 1" +
V2€t+vtx€ = min| Lx ]_411 4] Lu V2+L

Vs 1 2
SV EHE v+ v )+ (V- ETV )]
x' X uy 1 u, 2 2€x XX
(6.12)
Let us define, as usual, the Hamiltonian on the nominal trajectory:
H(x, tyuy,u,, VX) = L (x, t,ul,uz) + fo(x,t,ul,uz) (6.13)
Then on this nominal path,
H =0=H ‘ (6.14)
%1 Y2
d . _ T _ -
3t Vx” Vtx f VXX-HX- Lx+ VXfX ' (6.15)
so (6.12) reduces to
v,  -v, f=0L" V., (%t = K (%)
let lex ’ le¥™ 01 f
v, -V, f=1F V, (%t =K%, (6.16)
2et 2ex ’ 271 f ’ |
These equations have identical solutions. Defining Vle = VZE :—A~V€,
d + - +,-
- = = i
I Vé L, Ve(xf,tf) K (xf) _ (6.17)

where the total derivative is taken along the nominal path.



It is convenient at this point to obtain a differential equation

for VEX(;;(t), t). It is easy to verify that

.4 - - - T +

dt Vex - V~‘.’i"c:>{ V@cxf - LX ' Lu1 1x * LuZ\I/Zx

+ VGx(fx + ful\lllx + fuz\llzx)

V_ (t) = K (x(t,) 6.18

ex'\'f! T Py (6.18)

where, from the nominal solution™,
;__ -1 T
¥y = Hulul(Hulx + fulvxx)
w, =-H\ M-V ) (6.19)
2%2 U2¥ 2

Since v; and v, do not appear in (6.16), the minimizations
required in (6. 6) must be performed on the second order terms in the
expansion. Collecting these terms, using the fact that, from the

nominal solution,

V. =-V_ _ -V__ _f=H
KX

FV_ £ £y
XX xxt X XX X X XX

X

~H O +V £ )H“ﬂl(H FEL V)

@ +V £ ) ETY m v iT v )

V_(t) = K__(x(t) (6. 20)

XX

and performing the required minimization yields

*For the nominal solutions to exist, we must have H > 0 and
ugu
H < 0. 171
hrA)
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- -H +T , T T
vy “1“ [(f 1V + Hulx)g + Lul + fulve ]
_ -1 _ LT T ,T
v, = 2 [(f 4V e T Huzx)g Luz fuzvsx] (6.21)

or, alternatively, using (6.19) and the definitions in (6.10),

- @wrT e Ty

I

W1

w, = el w4 T yT (6,211

u,u,t U, u, €x
Using (6. 21) to substitute for v, and v, in the second order terms of
the expansion of (6. 6), and using (6.18) and (6. 20) to eliminate many

terms, the following equations are finally obtained for Vlee' and V :

2ee’
¥, =2V gt T ey ¢ owtt T ottt T
s3nt ™t LT ov ¢ omt ofF - omt T vl
«-ifz =-ov_f m b T yov g H'lu PR DL TRl S
€€ (9.4 U.1 ulul ul €X uz U.z 2 uz 111 U_lul ul
A (38, H “L T e gt Tyt
Vi) = Vo (t) =0 (6. 22)

Finally, an equation is needed for §. This is obtained by expandingi
the state equation (6.4) and collecting the linear terms in €:

1

_ ) - $T , T T
E=r t1 o ¥t fuz‘l’zx)’? full-lulul(Lul + fulve_x)
vt ol o@wrt el v
E(t )= 0 (6.23)
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where (6.21) was used to eliminate vy and v,. By integrating (6.17)
and (6. 18) backward from the terminal time tf, Ve and Vex are ob-
tained along the nominal trajectory. The first order correction to the
trajeétory can then be computed by integrating (6.23) forward from to
By integrating (6.22) backwards from tg, one can obtain Vlee and V

at the initial time to’ and these can then be used in the expansions of

Zee

the cost functions (6.7), (6.8) to get the second order corrections to

the Nash costs at time to. Note that these second order corrections
can only be obtained at to since at other times 6(t), the second order
correction to the trajectory which appears in (6.7), (6.8), is not zexro
and is not provided by our method. However, knowing the second order
terms in the costs at t, might be useful in determining the range of €

over which the approximation is acceptable.

The procedure just described, although messy in appearance,
is computationally simple. No iteration is involved, once the nominal
solution has been found. However, there is no way to improve the

accuracy of the approximation except by going to higher order expansions.

6.3 The "almost identical goal" differential game

In an "identical goal' game, all the players try to minimize the
same cost criterion. In this special case, the Nash solution (which is
also the only noninferior solution) is just the optimal solution any single
player would achieve if he could choose all the controls. If, in a general
differential game, the cost criteria involve a parameter € such that,
if € = 0, the game reduces to an identical goal game, then the Nash
closed loop solutions for sufficiently small values of € may be obtained

approximately by expanding the solution in € around the '"nominal"
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(€ = 0) trajectory. One might qualitatively describe such a game as
one in which conflict plays a relatively minor role, compared to common

interest.

Since the idea behind this approximate solution is the same used
in the previous section for the "almost zero-sum?'" game, only the
problem statement, the form of the expansions, and the resulting

approximate solutions will be presented.

The problem is for the ;th player (i =1,...,N) to choose u, to

minimize
ty .
J. = S; (L (e tyuy,veuy) + el (x, tyuy, . ..,uN)]dt
o
+ KT (x,) + €K, (x,) (6. 24)
f it ’
subject to
* = f(x,t, Ugyeons ,uN) s x(to) =% (6.25)

Fori=1,...,N, let ¥(x,t,€) be the field of Nash closed loop equili-
brium controls, and let Vi(x, t, €) be the corresponding (exact) value
functions. Let x(t) be the exact nominal trajectory (€ = 0) through

the initial point x,to. Let the trajectory, controls, and cost functions

be expanded in € along the nominal trajectory as follows:

x(t, €) = X(t) + €€ + €20 + ... (6. 26)
V., t,€) = Vit + V. (mt)+V E)+e2(iv. +1ivoe
P\ X by € = VX, ie'® x 2Viee T 2V
1.T
il .z
PV _EHZEV_E)+ ... (6.27)

u, = \I/i(x,t) + e(wi + \I/ix’«;-’) =¥+ ev, (6.28)



By expanding the value function equation as in the previous section,
the following exact equations are obtained:* -

1 T

v, = ~H_ [(fTV +H e+ L. +f§ v ]
1 u.u. u. XX . X 1. u. 1E€X
i1 i 1 1 1
Vie= Ly 5 Vit = Kilxg)
N N
-V, =L, +V, (f Zfﬁx.uz . W,
i€ ix i€x''x u, jx iu, Jx
j:]_ .]:]-
Viexlts) = Ky (%)

E(t) = 0
where, from the nominal solution,

C=ent w4y )
1x w.u. u.x u. XX
11 1 1

and where all functions, including the various partial derivatives of
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(6.29)

(6. 30)

(6.31)

(6.32)

(6. 33)

the

nominal Hamiltonian H, are evaluated on the nominal path. By inte-

grating
N
: -1 T
V. = Z (L. +V, £ )-2(L, +V. £ )H ~ [L
1€€ Ju, JEX u. iu, 1€X U1, u.u.  Ju,
j=1 J J J J JJ J
Viee( f) =0

*These quantities may be interpreted as the sensitivities of the Nash

controls, costs, cost gradients, and trajectory to the parameter €.
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and using the result in the expansion (6.27), the second order terms
in the cost functions can be found at the initial time. (They cannot

be found for t > ts because 6, the second order term in the expansion
(6.26) of the trajectory, appears in (6.27). Nevertheless, it may be

worthwhile to evaluate Vi (to) via (6. 34) in order to get an indication

€€
of the range of € over which the "almost identical goal" approximation

is valid.

6.4 Competitive interaction among weakly coupled systems

In this section we consider a set of N systems operated by
separate controllers with different, unrelated objectives. 'If the systems
operate completely independently of each other, the optimal controls
for the set of systems can be found by solving N separate, unrelated
optimal control problems. But suppose the systems interact (due to
coupling between the N differential equations describing them). Then

each controller must consider the actions of the other (N - 1) con~

trollers, and the situation has the structure of a differential game.

We shall say that the N systems are weakly coupled if there is

some scalar parameter € such that, when the state equations are
written in the form (fori=1,...,N)

}.{i = :f,l(xi,t,ui) + Ggi(xl, s Xpp by, e ,uN)

it ) = % (6. 35)

then € is small enough so that it is reasonable to expand all solutions
in Taylor series in €. Here X, is an ni-dimensional vector which in the

absence of coupling would be the state vector for the ith system.



6-13

The ith player wishes to choose u, to minimize

t,

I
Ji = 5; Li(xi’t’ui)dt + Ki(xi(tf)) (6.36)

o
Lacking a means for reaching "cooperative” solutions, it is reasonable
to assume that each player wants his strategy to be optimal against
whatever strategies the other players are using. If each player also
realizes that all the other players are thinking this way, the result
will be the Nash equilibrium solution. Assuming each player has con-
tinuous knowledge of Xj for all j, we seek a first order (in €) approxi-
mation to the closed loop Nash solution, following the same procedure

used in the previous two sections.

When € = 0, the problem splits into N separate control problems
which can presumably be solved by DDP or some other appropriate
algorithm. The solution to these problems starting from X to (the
nominal solution) will be assumed known. Denoting the exact Nash
controls and corresponding cost function for the ith player by
\Ili(xl, e Xp b €) and Vi(xl, coes Epp b €) respectively, we use the

following expansions around the nominal path:

— 1 2 /
xi(t,e)-xi(t)+e§’i+-2-e Gi+... (6.37)
V. te) = V.(5,t) + eV, +V. E)+ 2V
i Fp h € V5 ie ™ Vi 510 T 2€ Hiee

N
v ely E.+V. @ +ZZ* )+
i ix.x. i ix. i i€x,7] o
i1 i 71 j

(6.38)
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T (xp, ey b, €) = \]zi(§i,t) tev ... (6. 39)

By expanding the value function equations and following the
procedure used in Section 6. 2, the following exact equations can be

obtained: fori=1,..., N

v, = -1’} [( +£F . + gt VI 4+ £8 VI ] (6. 40)
i iu.u iu,x iv, ix.x.'7i iu, ix iex
il i A i i
Vie® Vi 8 0 Vielt) = O (6. 41)
Yy = Vi, TV g VRV (g g W)
iex iex, jx juj jx. i 'ix.x ixi ix, iu, jxj
Viex.(tf) =0 (6.42)
J
B ) -1 , T ,T T T
§ ° ( ix, T fiu. ix )Ei iu, iu.u.( ia, Vix, T L iex.) tg;
i i i i
§i(to) =0 (6.43)
where, from the nominal solutions,
o= -mtt om + v, ) (6. 44)
ix, iu,u, iu x, in,  ix.x,
i i i1 i it
All functions are, of course, evaluated on the nominal path. By
integrating
V. = (V. £ +V,_ g OHS (r vE +gl vl
i€e iex, iu, ix,%iu, iuw,u, v, iex, iu.  ix.
i 1771 I i i
N N
) -1
* ZZ Viex;gj ) ZZ (Vix.giu; ¥ Viex.fju:)Hju,u.
J':l J J:]- 1 J J J J J
o, Viex, ™ Eju, Vi)
J J J )
- 6. 45
Vieelty = 0 { )




the exact second order term in the expansion (6. 38) of the costs can

be obtained at the initial time (not at later times because Qi is unknown).

Thus, once the set of N unrelated nominal problems has been
solved, by some control algorithm such as DDP, then the first order
corrections to the closed loop Nash solution when € # 0 can be found
by integrating the linear differential equation (6.42) backward from the
terminal time, then integrating the linear "state sensitivity equation®

(6.43) forward from the initial time.

It may be objected that, although we have found an approximation
for the closed loop Nash solution, the results are not given in closed
loop form. However, for small perturbations from the first order
approximation to the Nash trajectory, ‘corrections can be made by using
the nominal linear feedback law (6.44). A more accurate feedback law
could be obtained by further expansions, but this seems rather pointless
gince our solution is in any case only an approximation (with error pro-

2
portional to € ).

6.5 The "almost ordered® differential game

In the "ordered" differential game, the players can be numbered
in such a way that the ith player need not be concerned with the actions
of the last (N - i) players in the order, but only with the actions of the
first (i - 1) players. This is not really a game, but only an ordered
sequence of optimal control problems. The controls of the first (i - 1)
players can be considered known inputs to the ith player’s system, and
the ith control obtained by solving a usual optimal control problem in=-

dependent of the actions of players i+ 1,... /N.
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Even more generally, there might be some partial ordering of
the players forming a heirarchy (see Fig. 6.1). Each player need only

be concerned with the actions of the players above him in the heirarchy.

Fig. 6.1. A partially ordered Fig. 6.2. An "almost partially
10-player game. ordered™ 10-player ga:
Dashed lines indicate

weak coupling.
For example, in Fig. 6.1, Player 5 need only consider the actions of
Players 1 and 2. Again such a game can be solved by solving a heir-

archy of optimal control problems.

In this section we wish to consider differential games where
there exists strong unidirectional coupling as in Fig. 6.1, plus "weak"
two-way coupling, so that all players must take account of the actions
of all the other players. Such a situation is indicated in Fig. 6.2. The
assumption that the "upward" coupling is weak makes it possible to ob-
tain approximate Nash closed loop solutions by using the same approach
used in the previous three sections. In fact, the weakly coupled game

of Section 6.4 is a special case of the game considered in this section.




Because the approximation method proposed here is based on
exactly the same idea used in the previous sections, only the statement
of the problem will be given. It is straightforward (but tedious) to
derive equations for Vie’ Viexj’ and Viee" and thus to obtain the first

order terms in the power series expansion in € of the closed loop Nash

controls and costs.

To avoid excessively cumbersome notation, we state the problem
only for a total ordering of the players (rather than the more general
partial ordering illustrated in Fig. 6.2). The extension to the more

general case is straightforward.

The problem is then for the ith player (i = 1,...,N) to choose a

closed loop control function ui(x, t) to minimize

t
f
Ji=§ [Li(xl"“’Xi’t’ul’”’”ui)+EMi(xl’""XN’t’ul”‘“’uN)]dt
to |
+ Ki(xlf’ ce ’Xif) + ePi(xlf, co ,fo) (6.46)
where
¥,o= f(xy, oo X, tug, e, W)t €Z(Xy, 0 ey Xpgs by Wy, e e, U )
i il i 1 i 1 N 1 N
x,(b) = %, (6. 47)

‘When € = 0, the resulting "nominal" game can be solved as a sequence
of optimal control problems, all of which are assumed to be solvable
by some known algorithm such as DDP. An approximate closed loop
Nash trajectory is then obtained by expanding in € around this nominal

path, using the same procedure followed in Section 6. 2.
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6.6 The "almost linear~quadratic" differential game

As the last in our collection of special differential games for
which approximate closed loop Nash solutions can be obtained easily, -

we consider the case where the game is almost linear=-gquadratic.

The problem is for the jtb player (i = 1,...,N) to choose control

function ui(x, t) to minimize

t
f
1. 7T 1. T
J, = S; ["Z—X Q.x + Z zY Rijuj + el (x,t,uy,. .. ,uN)]dt
o j=1
¥ 2x08, x4 €K, (x,) 6. 48
2% S0y T By lxg . (6. 48)
where
N ‘
x = Ax + z Bjuj tetlx, tug, . uy) 0 x(E)) = % (6. 49)
=1

When € = 0, this problem reduces to the special form of the linear-
quadratic differential game considered in Chapter IV. The most general
linear-quadratic differential game, for which Nash solutions are pre-
sented in Appendix A, could also be extended to the "almost linear-

quadratic " model.

If we follow the procedure used in the previous sections, we can
obtain the first order terms in € of the power series expansions of the
closed loop Nash controls and costs. We would then find that these

first order corrections depended on Li and f only through f, Li’ fx, fu ,
i
Lix and Liu evaluated on the nominal path. It would be a simple matter

j
to compute the first order approximate solutions this way. However,
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there would be an error (of order ez) even if Li were a quadratic
function and f were a linear function. This is somewhat disturbing,
since we know that we could obtain the exact solution to this problem

as easily as we can obtain the nominal solution!

If we only want a solution for a particular value of € we can

obtain a more accurate approximation by the following iterative pro=

cedure:
(1) Compute the nominal solution with € = 0.
(ii) Expand L. and fin power series in x and uy,..., UnN around the

nominal path.

(iii) Redefine the linear and quadratic terms in the nominal problem
to include the corresponding terms in the expansions of Li and
f. (For example, replace Qi by Qi + ELixx’ with Ly evaluated
on the nominal path, and subtract '12'XTL. x from L,.)

1IXX 1

(iv) With these new parameters, again set € = 0 and compute a new

nominal path. Return to step (ii).

(v) When this process has converged, the problem will have been

recast in a form such that, along the nominal path,

=K, =L, =1 (6. 50)

If we then expand the Bellman equation for this recast version of the
problem in a Taylor series in € (pretending that Qi’ Rij’ etc. are not
dependent on €), we will see that the second order terms are already

minimized by the nominal controls. Thus we have an approximate set
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of Nash controls, with error of order 62. (Higher accuracy could be
obtained by expanding the Bellman equation to higher order in €,

. although this is somewhat cumbersome.) In any case, the iterative
procedure described above (‘which resembles the extended DDP al-
gorithm described in Section 5. 3) produces a correction to the control
with error proportional to ez and produces the exact Nash solution if

the original problem (including the €-terms) is linear-quadratic.



CHAPTER VII

CONSTRAINED LINEAR DIFFERENTIAL GAMES

7.1 Introduction

Very little has been said in the previous chapters about the
possibility of having inequality constraints on the control or state
variables. Our approach has been to try to extend known results of
optimal control theory to the more general nonzero-sum differential
game. Inequality constraints, especially those involving only the state
variables, greatly complicate the analysis of optimal control problems.
The known algorithms for handling inequality constraints on the state
variables are rather unsatisfactory, especially if several such con-
straints are present. Thus one is naturally reluctant to tackle state

variable inequality constraints in the more difficult differential game.

However, in realistic situations which have differential game
structures (most of which arise in economic contexts) inequality con-~
straints abound. The analysis of economic competition by differential
game models will certainly require methods for handling at least a few
inequality constraints. In this chapter we shall discuss what is probably
the simplest constrained differential game of economic interest. The
constraints, system equations, and cost criteria are all linear functions

of the state and control variables.

The discussion of the constrained linear differential game (CLDG)

in this chapter is preliminary in nature. No important results have been
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obtained fér this problem. In fact, the model has apparently never
been formulated before. The special linear structure of the CLDG
and its resemblence to linear programming seem to offer the hope
that practical computational algorithms may eventually be developed
(if not for the continuous CLDG, then perhaps for some multistage
version). The availability of an algorithm for solving CLDG with
several constraints (at least four) would make the CLDG a potentially
powerful tool analysing imperfect economic competition. It could in

fact become the most useful of all differential game models.

In the following section, the CLDG is stated in a form which
is an extension of the constrained linear optimal control problem.
Some restrictions on the form of the constraints are necessary in order
that the problem make sense as a game. These are discussed, and a

general economic interpretation of the model is given.

In Section 7.3, the CLDG is presented in a more general form
which is an extension of the "continuous linear programming® problem
and the model is interpreted economically in terms of a set of coupled

"hottleneck" problems.

Some of the difficulties one would encounter in attempting to

compute Nash solutions are discussed briefly in Section 7. 4,

7.2 Extension of the linear optimal control problem

In the general version of the constrained linear differential
game obtained as an extension of the corresponding optimal control

problem, the e player wishes to choose u, to maximize

(2

1)



t N

f
. T T T
Jiui (q_lx+ Z rijuj)dt+ki X (7.
o j=1
subject to
Sc::Ax-%-szuj-l-w R X(to):xo (7.
j
| <
Giui Dix + di (7.
ua £ 0 (7.

i
where a, rij’ A, Bj’ W, Gi’ Di’ and di are time-dependent vectors

and matrices, known by all the players.

It is important to realize that Player i is restricted in his
choice of controls only by (7. 3) and (7. 4), not by the corresponding
equations for the jth player. In other words, the ith player is not
responsible for assuring that the jth player will always have a feasible

control.®

Various assumptioné may be made about the state vector infor-
mation available to the players during the course of play. However, it
is essential that the model be constructed in such a way that at each
instant:

(i) There is always a feasible control for each player, regard-

less of the past or present actions of all the other players.

(ii) Each player knows how to choose a feasible control.

*In a strictly mathematical sense, certain types of "solutions" may
exist even when it is possible for a player to "become infeasible."
An example would be an open loop Nash solution where each player
was required to choose his controls subject to (7. 3), (7.4) for all i.
But this is not the model we have defined.

ot
——
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We shall assume that the parameters are such that (i) is satisfied.

If this were not the case, it would be possible, by some sequence

of feasible controls, to reach a state Where one player has no feasible
control. The game could then not be continued, and we have defined
no payoff to the N players associated with this result. A game is
meaningless unless payoffs are defined for every feasible outcome.

Hence one should reject any game model where (i) is not satisfied.

If condition (ii) does not hold, then some subset of‘the players
could consider the following strategy: Work Player i into a position
such that (even though, by (i), he has a feasible control) he does not
know which controls are feasible. The game cannot proceed beyond
this point if Player i makes a "wrong guess," and no payoffs are as-
signed for this result. Thus, open loop controls usually do not make
sense when there are inequality constraints, and the least one can
assume is that each player knows the right side of the constraints
(7. 3) associated with his own control. (Otherwise he might choose
an infeasible control.) Alternatively, one might assume that each
player has instantaneous knowledge of the entire state vector x, so
that he can compute the constraints faced by all the playei‘s. His con-

trols would then be closed loop.

Note also that the formulation does not allow a single constraint
to involve two players' controls, for then cooperation would be re-

quired to see that the constraints are satisfied.
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Many situations of economic competition can be represented
by the differential game (7.1)-(7. 4).% The following interpretation
illustrates the idea. The N players might represent a collection of
large corporations. The control vector u, represents the set of levels
at which the ith firm carries out its activities. For example, the
‘components of u, could be the rates of production, labor training,
capital investment, and dividend payment. The state vector x repre-
sents the various scarce resources needed to carry out the activities
of the firm, e.bg. , machines, trained labor, market demand, e‘tc.
Some of these resources may be associated with individual firms,
while others (for example, a lake for water supply and sewage disposal)
may be shared by several firms. The term q;rx in the payoff could
represent the desire of the management to preside over a large organi-
zation (said to be the real objective of most modern managers) while
the terms in 'Ii involving the controls could represent dividends paid
to shareholders (the more traditional goal of profit maximization).
The terms in Ji involving the rivals! controls could represent the
nuisance value of certain activities of the other firms (most models
would probably omit these terms). The terminal term k;rxf represents
the estimated value of the final state, taking account of possible opera~-
tions beyond the time horizon 1:f (often the hardest part of the model to

formulate).

The n x n matrix A represents the rate at which the various
resources diminish or grow independent of the decisions of the managers

(e.g., depreciation, retirement, growing affluence of consumers, etc.).

*The reader who is familiar with linear economic models can skip the
rest of this section.
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An inhomogeneous term w covers external inputs to the resource

supplies and also allows the iower bound on the activity levels to be
0 in (7. 4) without loss of generality. The rates at which resources
are increased or depleted by the various activities are given by the

matrices Bj'

Eq. (7.3) says that various individual activities or linear com-
binations of activities of a single firm are limited by the available
resources. For example, one component of u, might be the rate of
production. It would then be limited by the production function,
assumed in this model to be a linear function of equipment, labér,
and other scarce goods. A row of Di which is all zeroes (with the
corresponding component of di positive, represents an 'institutional®
constraint, independent of the resource levels (i.e., a fixed upper

bound on the corresponding component of ui).

Generally the model would be formulated so that the components
of x are always nonnegative. The various matrices and vectors in the
problem may be quite sparse, as long as there is enough coupling so

that each firm must be concerned with decisions of all its rivals.

7.3 Extension of the continuous linear programming problem

A somewhat more general form of the CLDG may be obtained

2L cLp).

as an extension of the continuous linear programming problem
.t .
In this version of the game, the i h player wishes to choose u, to

maximize



t. N
f T
J. = § Z a. . (t)u.(t)dt (7.5)
1 £ 1J J
o j=1

subject to the constraints

t N
Bi(t)ui(t) ) ci(t) + S; Z Kij(t, s)uj(s)ds (7.6)
o j=1

ui(t) = 0 (7.7)
where the functions aij’ B., <5 and Kij are all bounded and measureable.

By using the transition matrices associated with the linear
system, the version of the game in the previous section can always
be put in the form (7. 5)-(7.7). (This is not always éasy computationally. )
But the converse is not true, since not every K(t, s) is the transition
matrix of a finite~dimensional linear system. For example, the case
where
0 ift=-s<a
i AU TPRS

cannot be represented by a model of the form (7.1)=-(7.4).

The economic interpretation of (7. 5)=(7. 7) is similar to that
given in the previous section for (7.1)~(7.4). Note that at time t the
ith player does not merely choose the u, satisfying (7. 6) which gives
him the largest value of ai'gui. He must also consider choosing u, to
increase the right side of (7.6), enabling him to choose larger controls
at later times. In addition, his choice of v, will affect the constraints
of the jth player. Since the values of uj chosen by the jth player at later

times will affect both the costs and the constraints of Player i, the latter
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must also consider the future effect of his choice of u,i(t) on the actions
of his rivals. Moreover, he knows that the other players are thinking

the same way.

For the case of a single player (N = 1), (7.5)-(7.7) is some-
times called a "bottleneck" problem; the name is suggested.by the form

of (7.6). For N > 1, the game might be called a set of coupled bottle -

neck problems.

7.4 Solutions

As in all nonzero~sum differential games, there are a variety
of "solutions" to the CLDG which may be of interest. The set of non-
inferior solutions can be found by solving a (N - 1)-parameter family
of continuous linear programming problems. Maximin solutions for
each player can be found by solving a set of N zero-sum games, each

about as difficult computationally as a CLP.

In most CLDG models, the solution of greatest interest will be
the Nash solution. We have seen that the Nash solutions are different
for different assumptions about the information available to the players.
The most tractable model is obtained by assuming that all players know
the values of the right side of (7. 6) for alli (i.e., the controls are
closed loop). Naturally, one would hope that a practical algorithm for
computing closed loop Nash solutions could be obtained by extending a
known algorithm for the linear optimal control problem or for the CLFP.
Unfortunately, although many theoretical results for the CLP have been

(21)

given by Grinold involving existence of solutions to primal and dual
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problems, a really satisfactory algorithm for solving CLP is still
lacking. Correspondingly, optimal control theory has not produced
efficient methods for solving constrained linear optimal control prob-

lems, especially when there are more than a few constraints.

One approach to the solution of CLP is to discretize time and

solve a linear programming problem (LP) of the form

Maximize aTz subject to Bz S ¢ , z # 0 (7.8)
Z

where z is the large dimensional vector formed by adjoining the control
vectors at each of the discrete times. However, some difficulties arise
when we attempt to extend this idea to the nonzero-sum CLDG. In (7.8)
the controls are approximated by a piecewise constant function of time
only. But our closed loop assumption requires that the controls be
considered as functions of the state (i.e., the values of the‘ constraints)
as well as time. To represent such a control function as a static vector,
we would have to discretize the levels of the constraints. Besides intro-
ducing further inaccuracies, this would enormously increase the number
of constraints in (7.8). This problem does not arise in the single player
case because then the closed loop and open loop assumptions lead to thg

same optimal trajectories.




CHAPTER VIII

EXAMPLES OF DIFFERENTIAL GAME MODELS

8.1 Introduction

Almost all the published work on differential games so far has
dealt exclusively with two-person, zero-sum differential games. The
examples have mostly been "pursuit-evasion" situations, motivated by
such military applications as anti-missile defense, submarine warfare,
deployment of ground forces, aerial combat, etc. Those who have
constructed such models have, in effect, ruled out the possibility of
mutual interest between the conflicting parties. The extension of the
theory to the nonzero=-sum case makes it possible to consider dynamic
situations where both mutual interest and competition are important,

a much broader and more interesting range of problems can then be
plausibly formulated as differential game models. It would appear that

most of the new applications are in economics, although it is clear that

even in military situations there is always some mutual interest.

The purpose of this chapter is to illustrate a variety of possible
applications of nonzero=-sum differential games to the analysis of im-
perfectly competitive situations. Each of the remaining sections con-
siders a different area of application and presents a model which,
although simplified, hopefully at least approximates the real situation
well enough to be interesting. No attempt is made to "solve' these
examples in any of the senses discussed in Chapter III. Even the one-

player versions of these models make difficult optimal control problems.




From the discussions in Chapters V, VI, and VII of the additional
computational difficulties which arise when optimal control problems
are extended to differential games, it should be clear that the analysis
of the games presented below must await the development of better

computational methods.

In addition to the computational difficulties involved in finding
"solutions " to realistic differential game models, it may be very hard
even to formulate the inodel in a plausible way, if the system is not
Uphysical." A differential game model requires an underlying dynamic
system, describable by a finite-dimensional vector differential equation.
Generally not enough is known about economic, social, or psychological
tsystems™ to permit one to have much confidence in such a description.
For example, what set of variables would serve as an adequate 'state
vector " for representing the attitudes of consumers about a set of pro-
ducts? Moreover, even if one were reasonably sure of the form of the
dynamic model, it might be an unreasonable task to determine empiri-
cally the many parameters involved in the model. Of course, these
same difficulties arise in the application of optimal control theory (or

even mathematical programming) to "nonphysical® problems.

8.2 Dividend policies of imperfectly competitive firms

Consider the dividend policies for N firms, each manufacturing
a single product. The products are substitutable but not identical.
This means that an increase in the price of the ith product results in
lower (but not zero)} sales of the ith product and increased sales for all
other products. In this model, the amount produced by each firm is a

function only of the firm's capital, and everything produced is sold at
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whatever price the market will offer. These "market clearing prices”
are in turn determined by the amounts of all N products currently
offered for sale. A firm can generate new capital only from its own
profits (no borrowing allowed). Given the appropriate production,
demand, and production cost functions, one can obtain a vector func-
tion giving the net profit flow for each firm as a function of the vector

of capital levels of all the firms.

The task of the management of the ith firm is to choose the

(continuous) dividend rate u, to maximize the "shareholder's utility

function®
b
J. = S‘ u.e_a(t-to)dt + x.(t )ewa(tf-%) (8.1)
i ¢ b iVt
o
subject to
X, —:Ei(xl,. .,xN) - u, (8.2)
= =z
u, 0, X X, (8. 3)
where
s . .th .
X, = capital level of i firm
f. = net profit function

1

Fi(xi)Pi(Fl(xl)’ ceey FN(XN)) - Ci(xi)
Fi = production function
Pi = market-clearing price function
Ci = production cost function
a = interest rate
This is clearly a nonlinear nonzero-sum differential game., Even with

very simple Fi and Pi’ the inequality constraints make it difficult to




analyze. The form of the terminal cost function implies that the
entire capital assets could be instantaneously liquidated (i.e., paid

out as dividends) at the end of the planning period.

8.3 Competition among firms through advertising

In some industries, the firms do not compete through their
prices, nor through the amount of their products they offer in the
market. Instead, the prices are fixed by tradition, and any firm can
easily supply any amount of its product to the market. The firms
compete entirely through promotional campaigns, and the cost of this
promotion is the only important cost to be considered by the decision-
makers. All the other costs in the model to be considered here will
be included in a fixed overhead cost (which can be ignored since it can-
not vary) plus a cost which is a linear function of the amount produced.
The (constant) marginal cost is assumed less than the (fixed) market
price, so that it always pays to produce as much as the market demands.
Many consumer industries resemble this model; typical examples are

cigarettes and cosmetics. ™

The decision variable for the i'> firm is the rate at which it
spends money on advertising (it is assumed that each firm knows the
optimal way to spend any given sum of money on advertising). It is
important to recognize at this point that the "dynamic system®" involved

here is not the set of firms, but the market itself. The "state variables'

®Krishnan and Gupta(ZS) consider a static model of duopoly where the
control variables are price and promotional effort.




in the model must be some collection of quantities which represent

the attitudes of the public toward the various "brands." These attitudes
are, or course, influenced by advertising. We would expect that these
aggregate measures of consumer attitude would change slowly and
smoothly in response to advertising "inputs," so that the dynamic be-
havior of the market demand could be approximated by some finite-state

model. We shall make the simple assumption that the demands them~-

selves adequately represent the state of market. (A formidable amount

of research in market psychology would be required to formulate a
more accurate state-variable model.) The model is then formulated

as follows:

The manager of the i*™® firm (i=1,...,N) wants to choose his

rate of advertising u; to maximize profits, discounted to the present:

't a(t,-t)
Ji = <Cix'i - ui)e O "'dt + possible terminal value (8. 4)
%
subject to
k = i(x,uy, .,uN,t) (8. 5)
uy Z 0 (8.6)
where
x, = rate of demand (in $ per day) of ith firm's product
.th . '
= gross revenue of i firm, per day
c, = fraction of revenue left after marginal costs (0 < c; s 1)
o = interest rate
f. = rate at which rate of demand for ith product changes
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where f would have the following general properties:

(i) fiu. >0 (positive marginal return on advertising)
1
(ii) i, <0 (saturation effect)
iu.u,
ii
(iii) For any set of constant positive u;,... » Uy and any initial x,

(8.5) is stable.
Various other assumptions about f depend on the nature of the market.
For example, if the market were highly competitive in the sense that
one firm increases its sales mainly at the expense of the other firms,

then we might assume a form of f such that fiu < 0 for j ;i[ i.
J

8.4 Control of inventory through pricing

The previous two sections presented simple models for oligo-
polistic competition among firms producing related products. Each
firm was large enough to influence the behavior of the market. In
the model in Section 8. 2, the prices offered by the market were assumed
known as a function of the quantities of the products of all the firms
offered for sale. An instantaneous change in the amount of goods offered
would cause an immediate change in the "market-clearing¥ prices. The
decision variables were not the amounts of goods offered but the rate at
which production capacity was increased. The "lag" or finertia" in the
model came from the process of increasing production capacity by in-

vestment of profits.

In the model in Section 8. 3, it was assumed that the rate of
production could be changed instantaneously to fulfill exactly a varying

demand, Prices in this model were fixed by tradition. The amount of



each product demanded by the market was assumed to depend on the
advertising done by all firms at all timmes up to the present. The
"inertia " in this model came not from the production process but from
the gradual changes in consumer attitudes due to continual exposure to

advertising.

It should be clear by now that the essential feature of a differ-
ential game model is the "dynamic system"-~the process which provides

the Mnertia" needed to link past, present and future decisions.

In this section, oligopoly is modeled by still another type of
dynamic system. In this model, the production for each firm is given
exogenously as a function of time. The demand for each product is a
known function of the prices of the goods offered by all N firms. Each
firm may instantaneously control its price, but the excess production
which is not being sold must be stored, at a cost dependent on the
amount stored. In addition to the storage costs, some of the inventories
are lost through spoilage or depreciation. The state variables are then
the inventories of each firm. A firm with no goods in stock can, of
course, sell nothing. Each firm wishes to maximize profits. If the
operation is "seasonal," the inventories left at the terminal time would
be worthless. Otherwise, some terminal value might be assigned to
inventories at the end of the planning period. Each firm tries to control

its inventory by judicious choice of prices.

The operator of the ith firm chooses his price u; to maximize

t
f

Ji = S; [uiri(xi, Ups e ey U t) - ci(xi, t)]dt + terminal value
o

(8.7)
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subject to
;'ci = Fi(t) - ri(xi,ul, s ooy UNp t) ~ si(xi,t) (8.8)
uy = {8.9)
0 ifx=0
FiPp R e 6 = D, (uy, -+, 0y t) if x>0 (630
where

X, = inventory of ith firm
Fi(t) = production rate (exogenous) (Fi Z 0)

r. = rate at which ith product is sold

Di = market rate of demand for ith product

s, = depreciation or spoilage rate for ith firm's inventory
(Si Z 0 and si(O,t) = 0)

c; = storage cost rate for i firm (c; Z 0)

Many other "coupled" inventory problems could be modeled as
nonzero-sum differential games. For example, prices might be fixed
and inventory might be controlled through production, investment, or
adv,ertising. More complex models of oligopoly could be constructed

where the inventories are only part of the state vector.

8.5 Nepgotiations between labor and management

A simple model for continuous negotiations between labor and
management is presented in this section. The model has the structure
of a two=person nonzero-sum differential game. This model might be

appropriate for such problems because:
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(i) The "system" with which both parties are involved is a dynamic
one-~-present decisions affect future possibilities.
(ii) The interests of the two parties are not identical, but there is

a considerable degree of mutual interest.

To make the model simple, we assume here that one single state
variable--the firm's capital assets--adequately represents the "state"

of the system. The decision variables are the fraction of the labor

force employed and the fraction of the profits invested in new capital
equipment, both chosen by Management, and the wage level, chosen
by Labor. Management tries to maximize return to shareholders,

while labor tries to maximize consumption.

Define:
x = capital level of firm
u = fraction of total labor force employed
w = total wage rate if entire labor force works
f(x, u) = total production, in units so that price =1
L = total labor force, including unemployed
s = fraction of profits invested in capital equipment
(1 -~ s)f - w = rate of payment of dividends to shareholders
0 = capital depreciation rate
vy = worker's discount on future consumption

interest rate

a
c(u, w) = utility function for Labor employed at wage w

KL(xf) = present value to Labor of capital at terminal time
KM(Xf) = present value to Management of capital at terminal time
w, = wage which can be earned at alternative work by total

labor force
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The problem is then for Labor to choose the wage level w to maximize
' ¥tomt) 8. 11
JL: . c(u, wje '''0 dt+KL(xf) (8.11)
O

while Management chooses the fraction u of the labor force employed

and the fraction s of net profits reinvested to maximize

t
f
Im = S‘ [(1 - s)f(x,u) - w]ea(to-t)dt + KM(X;E) (8.12)
. t
O

both subject to

% = sf(x,u) ~w=~0x % given

0Susl

0SS w , w=0ifx=0

0SS 1 (8.13)

It is assumed that f(x, 0) = £(0,u) = 0, i.e., both capital and labor are
necessary for production. The utility function for Labor, c(u, w), is

probably the hardest part of such a model to formulate.

Since this model has only one state variable, it might be
reasonable to compute closed loop Nash solutions by the "dynamic pro-
gramming" approach (Section 5.4). The continuous problem would
first be converted to a multistage game. In fact, since decisions in
labor-management negotiations, as well as in most other economic
processes, are made at discrete times rather than continuously, the

multistage game might be a better model than the differential game.

8.6 A model for international economic competition

This section presents a very simple differential game model

for the interaction of the economic planning policies of several countries.
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The model is far too naive to be of practical importance, but it
illustrates the idea that economic competition between nations has

the mathematical structure of a nonzero-sum differential game.

Our approach will be to consider first a model for economic
growth which could be used by the planners of each country if the
effects of the other countries could be ignored. By adding coupling
terms, the N separate economies are linked together, and the result

is a differential game.

As the basic "uncoupled" growth model for each country, we

(22)

use the one-state model due to Solow , Probably the best-known
model in economic growth theory. Letting

k= capital/labor ratio

f(k) = production function

s = fraction of production saved (reinvested)

‘3 ﬁ(t'to))

C

It

population growth constant (P = Poe

i

(1 = s)i(k) = consumption per capita
U(c) = utility of consumption
y = discount on future consumption (optional)
@(k(tf) = present value of capital at terminal time
the problem is to choose the saving ratio s to maximize

t
£
J = § U(c(t))e Y To)gr 4 @ (k(t,)) (8. 14)
t

o

subject to

0S g1 (8. 15)
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1

For certain simple production and utility functions [e.g., f(k) = ak?,

U(c) = c], this optimal growth problem can be solved analytically.

We shall assume that the coupling between any two economies
is some function of the difference in capital levels. Since the coupling
effect would presumably be small compared to the whole economy, it
seems reasonable to let this function be linear. Using the definitions

above, and adding subscripts to denote countries, the problem becomes: |

Fori=1,...,N, choose s; to maximize

J, = th (c.)e Vit to)gr + &, (x Ko oo) (8.16
7)), i iVLp o NS .

O

subject to
N

k, = s,f (k) - Z byl = k) = Bk
. j=1
0S5, S1

1
c, = (1 - s (k) (8.17

The coupling coefficients bij will generally be positive, reflecting the
idea that the country with a higher capital/labor ratio enjoys a compe-
titive advantage, and they will depend on the populations of both
countries. Of course, the bij must be sufficiently small so that ki will

never be driven negative.

In studying optimal growth models, one is often interested in

steady-state solutions, where the economy grows at the same rate as

the population, so that the capital/labor ratio remains constant. One

then chooses the constant saving ratio to maximize the constant per
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o]
!

capita consumption. Let us do this for our simple model, taking as
1

our production function fi(ki) = aikia and assuming linear utility. We
also put an € in front of the coupling terms, to emphasize their small-
ness and to allow us to determine the first order effect of coupling

on the steady=-state Nash solutions by using an expansion technique.

Define

2
yi—yi-i-exi-l'ze z, + ...

s. =8, +v,+ ... (8.18)
i i i

Then by inserting these expansions in (8.17), with k = 0, solving for
X, and Z, and choosing 8, and 7 to maximize consumption, we obtain
after routine manipulation the first terms in the expansion of the steady-

state Nash saving rates:

_ 1 ,

5. = 5[1-€ bij/ﬁi] ... (8.19)
JFL

The corresponding expansions for the steady-state consumptions are

2
a.
c, = é [1+ ZQZ bij/ﬁi] S (8.20)
j

|

s

1 .
1

1

This somewhat surprising result says that, in the steady=-state, a small

amount of coupling is beneficial to all countries. However, it must be
borne in mind that steady-state solutions are independent of initial

values. In fact, the per capita steady-state production for this model is
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2
a,
i

£, = E-B;[l + EZ- bij/ﬁi] + ... (8.21)
Jri

Note also the presence of the population growth rate (ii in the denomi-

nator. While the steady-state solutions do not seem to favor the large

or advanced countries (in fact, all countries are "developed" when the

steady-state is reached) nothing is said about the transient solution.

During this transition, which may take a very long time, it is possible

that the nations with high capital/labor ratios will be exploiting the less

advanced countries, to the detriment of the latter.




CHAPTER IX

SUMMARY AND CONCLUSIONS

9.1 Summary

A general class of differential games, where the N players
try to minimize different criteria by deciding inputs to a single dynamic
system, was introduced as an extension of optimal control theory. All
of f:he work on differential games which has yet appeared in the litera-
ture has been based on a zero=-sum formulation, which rules out the
possibility of mutual interest between the players. The nonzero-sum
formulation considered here made it possible to model a far richer
and more realistic class of competitive situations (many of which arise

in economic contexts) where mutual interest is important.

The nonzero-sum differential game not only has a wider range
of applications than the zero~sum model, but it is rﬁathematica};ly much
richer as well. The word "optimal" becomes meaningless, and one
must consider a variety of "solution" concepts. Several "solutions '
with different features were discussed, all from the viewpoint of optimal
control theory. For one solution, the Nash equilibrium, which is secure
against unilateral deviations by any one player, the appropriate con-
trols could be obtained by solving a set of coupled partial differential
equations, provided that a unique "Nash saddle point" of a vector
"Hamiltonian" could be found. It was seen that the Nash solutions depend

on what information is available to the players during the course of play;
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for example, the "closed loop" and Yopen loop" assumptions lead to
entirely different costs and controls. (In two special cases -~ the
optimal control problem and the two-person, zero-sum differential

game™ -- these two Nash solutions coincide. )

The minimax solution, where each player minimizes his
maximum possible cost, could be found by solving a set of N two-person,
zero-sum differential games. The minimax solution is rather unsatis-
factory when there is a significant degree of mutual interest, because
it is excessively pessimistic (in fact, it might be called the "paranoid

solution™").

Finding the set of noninferior (or pareto-optimal) solutions,
from which any negotiated solution would be chosen, involved solving

a (N - l)-parameter family of optimal control problems.

In one special case, where the system is linear and the costs
are quadratic, all of these solution types can be computed exactly with
relative ease. The Nash solutions, both open loop and closed loop,
were presented for a very general form of the linear-quadratic nonzero-

sum differential game. Noninferior solutions were also presented.

The computation of Nash equilibria for more general nonzero-
sum differential games is much more difficult than finding optimal
solutions to optimal control problems or two-person, zero-sum differen=
tial games. In spite of the apparent similarity of the problems, it was

seen that a successful efficient "second order" algorithm for solvin

*As long as open loop and closed loop Nash solutions both exist, and
provided that neither player ever deviates from the Nash rationale.
See ref. 5, Ch. 9.
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optimal control problems could not be extended to obtain an iterative
procedure for computing closed loop Nash solutions to nonzero=sum
differential games. The efficient computation of Nash solutions,
especially closed loop, remmains an outstanding problem. For the

general case, even approximate methods are lacking.

Certain differential games can be formulated in terms of a
small parameter such that, when this parameter is zero, the model
reduces to a special case where the exact closed loop Nash solution
can be computed. In such games, approximate Nash solutions can be

obtained by expansion techniques.

One other special type of nonzero-sum differential game was
presented -- the constrained linear differential game. It was presented
because of its great potential usefulness as a tool in analysing economic
competition, even though no results have been obtained for this problem,
either here or elsewhere., Its one-player version, the continuous
linear program, can be solved approximately by linear programming,
but it is not known whether this approach can be generélized to compute

approximate Nash closed loop solutions.

9.2 Conclusions and final comments

The nonzero-sum differential game model offers a promising
new framework for the analysis of the evolution of competitive processes
in the economy. Competition is thought to play an important role in our
economic system, yet it is not well understood. A differential game
model (or an equivalent multistage model) is appropriate for analysing

the type of competition which "evolves" slowly over time, that is,



where the effects of decisions are felt not immediately, but only

gradually after time has elapsed.

Obviously, just the formulation of a realistic differential game
model for describing competition in some industry would be a formi-
dable project, even if the analytic difficulties of "solving" the model
are disregarded. However, simply attempting to construct such a
model, even if one falls somewhat short of this goal, could be quite
instructive. - In seeking a differential game description, one might be

led to ask many new and interesting questions.

To the mathematical analyst, the nonzero-sum differential
game offers a great variety of challenging problems. It is to be hoped
that the research effort in the near future will be devoted to making
differential games a more powerful tool for analysing the types of com-
petition which really exist. This has not been the case in most of the
work which has been done on zero-sum differential games. Hopefully,
workers in nonzero-sum differential games will not lavish too much
attention on the tractable but economically uninteresting linear=-quadratic
case. It Would'be far more useful to make progress on the constrained |

linear differential game considered in Chapter VII.




APPENDIX A

THE MORE GENERAL LINEAR-QUADRATIC DIFFERENTIAL GAME

In Chapter IV, the N-player linear-quadratic differential game
was stated in its most general form (4.1)-(4.2). However, all the
results presented in the chapter were based on a simplified version
(4. 3)-(4.4), where the cross terms, linear terms, and inhomogeneous
terms were omitted. Nothing really interesting is sacrificed by con-
sidering only this simpler model, since it has all of the "important"
features of the more general problem. However, the terms omitted
in the simpler version sometimes occur when one tries to model fealis-=
tic situations by LQDG. For convenience in solving such problems,

the Nash solutions, both open loop and closed loop, are presented below.

r

Problem: Fori=1,...,N, choose u, to minimize

i

tf N
_ 1T T T 1T T

Ji = 5; [Zx Qix + a; x + Z (x Gijuj + Zuj Rijuj + C'ijuj) + z]dt
o j=1
1 T T

t xS 8% (A1)

all subject to
N
% = Ax + z Bjuj +wo, X(tO) =X, (A.2)

L

Note: Comparison of (A.1) with (4. 1) reveals that the above model is
not quite as general as it could be, since cross terms in the controls

of different players are not present in the cost integrals. However,




A2

there seem to be no reasonable models which contain these terms, and
since they make the analysis considerably messier, they have been

omitted here.

Closed loop Nash solutions are obtained by solving the generalized

Bellman equation (3.16) by separation of variables. The Nash cost

functions are
V(xt)‘ xS(t)x-l-E(t) x+‘r)(t) (A. 3)

and the closed loop Nash controls are

S D T T
T(x,t) = "R (BSS,;x + Gox + B, & +c.) (A. 4)

where

T 1.7T -1

S. - Q, +Z . .RIc + g . rRMGh)
i i ij

S.=-85.A-A
i i . ii i 33T i)
j

+Z[SBR LeTs, +G)+(G +SBR; 1B 5,]
PR S i VIt T j
j

- Z 8.8, + G.)R IR, .R7NGT + BTs))
% w6 e Vkd VR e VR T j
J

5;(tg) = 5;¢

——[A Z(G +SB)R B ]5 - a, -Sw+Z(G +5.B, JJ"
j

-1
- )I(G.. + S.B)R.'R.. - §.B. - G, R BIE. +c
Z[(JJ 2 R45 By~ 5iB; ] [E JJ]
j

j#i

E,(t) = & (A.6)



: T Z T 1,.T -1, T

= E wez 4 ) [EB +e - 3(E B+ e RR R BTE e

e W L8 By +ogy m Z ) By + cppRy RyIR B, + cj)
j

nyltg = 0 (.7

The set (A. 6) of N coupled linear vector differential equations can be
solved once the Sj (j =1,...,N) have been found by solving (A.5). It

is then a simple matter to evaluate the quadratures (A. 7).

Open loop Nash solutions are most readily obtained from the variational

necessary conditions (3.11)-(3.14). By guessing that the solution has
the form

)\i = Si(t)x(t) + Ei(t) (A.8)

and substituting this into the necessary conditions, one obtains the

open loop Nash controls
ui(t)=-R [(BS+G)x+c +B g] (A.9)

where the asymmetric matrix Si(t) is the solution of

S.=—S.A—ATS.-Q.+S.Z (B Ts 4+ gl
i~ i S S U R 3T
j
+ZG..R.‘.1(B'.I5. + GI)
L T
j
S,(tg) = 5. (A.10)
and the vector %’i(t) is the solution of
e _ _aTle _ 'jl T
g =-alg -a +Z (8B, + G )R (e, + B &)

J |
g;(tp) = & ¢ (A.11)




Note carefully that Si and Ei which solve (A.10) and (A.11) are not
the same as Si and Ei which solve the closed loop equations (A. 5) and

(A.. 6), except in certain special cases.

The costs associated with the open loop Nash solutions cannot
be obtained directly from the solutions to (A.9)-(A.11l), but once these
equations have been solved, the costs can be obtained by integrating a
set of linear equations which are a generalization of (4.13). Omitting
the straightforward derivation, we merely state the result: When all
players use open loop Nash controls, starting from the ini'ti‘al point

(x,,t,), their costs are

_ 1T T » ;
Ji = 5% Pi(to)xo + q, (to)x0 + ri(to) (A.12)

where the symmetric matrix Pi(t) and the vector qi(t) are solutions of

N
: T T 1T
P =-ATP -PA - .+Z G..+sTB )R InTp,
i T EA Y UGy + 57 BIR;BP;
=1
rpBRIBTs +6L) - 6. +sTBORIR, RN BTs, + Gl
Rt S TRt Tt B | (AT Tt L Ak N S A B M &
ra.rIeTs + 6Ty +(a.. +sTBIR G
F 0 VA et TR T Tt Ld TR
Piltg) =S¢ (2.13)

T To vn =l T
. = =A .—a.+z G..+S B.)R.. (B.g. +c..
4 9 "ot 2, NGyt Sy BIRy (Byay t oy
j
N T
+ ) [G,. +P.B, - (G,, + STB)R;R..JR . (c,, + B} .
Z[GU By Gy + Sy BRy R IRy (e ¥ By £y
j

C«Li(tf) = Sif (A. 14)



and

t

f

T T 1, T T, =1 b =1

r.(t =§ -z+z . B, +c¢c” - = . B, + IR, R.. ..

S(E) t{ .[ql it z‘% ; cJJ) i le]RJJ
o J

ey + B;rgj)}dt (A.15)




APPENDIX B

ALTERNATE DERIVATION OF THE COPEN LOOP NASH SOLUTIONS

In Chapter IV, the open loop Nash solutions for the linear-
guadratic differential game were obtained from the variational
necessary conditions. The open loop controls were given in terms
of the solution to an asymmetric "Riccati~like" matrix differential
equation (4.10). The reader who is familiar with the solutions to
linear-quadratic optimal control problems or two-person,‘ zZero=sum
differential games may have been surprised that in the more general
case the multiplier )‘i associated with the ith player was related to

the state vector by an asymmetric matrix Si’ and that the costs could

not be obtained directly from this matrix.

To aid in understanding this result, and to provide an inter-
pretation for the multipliers A, ..., )\N’ an alternate derivation of
the open loop solutions, based on the value function approach (i.e.,

the "dynamic programming"® approach) is presented here.

The derivation is based on the following idea: if the ith plaver
knows the open loop control functions used by the other players, he can
calculate his own open loop control by solving an optimal control problem
with the other players' controls considered as known forcing terms in
the state equation and cost functional. Either an open loop or a closed
loop method may be used, since they give the same solution in any
deterministic optimal control problem. Thus player i can use the Bellman

equation to compute his open loop Nash control explicitly as a function of




the arbitrary control functions used by the other players. The re-
sulting partial differential equation can then (by the usual educated
guess) be transformed to a set of ordinary differential equations with
boundary conditions at the terminal time. The still unknown controls
of the other players will appear in these equations. This is done for
all the players, and the entire set of controls can then be found by
demanding that, for each i, the Nash control found by solving the ith
player's optimal control problem be the same as the arbitrary control
assumed for the ith player by all the other players. Because the opti-
mal controls found for each player will be given in terms of the state
vector, this last step will require solving a two-point boundary value

problem. This is quickly accomplished by applying another old familiar

trick.

We are now ready for the details of the derivation. From the
point of view of the ith player, let the (unknown) controls for the other
players be denoted Q{j(t), j £i. The Bellman equation for the ith plaver

(for the problem stated in (4. 3), (4.4)) is

T 1. T 1 T
-Vit = mln[zx Qix + 5 Uy Riiui + > Z ny Rijg{j
+V, (Ax + B, + Z ng{j)]
j
V.(x t)==1~xTS » B.1)
iVt T 2% iy



We then guess the following separation of variables:

Vi, t) = 3x B (0% + £ (D% + n,(6) (B. 2)

Substituting this into (B. 1) and collecting like powers in x, one then
easily verifies that (B. 2) is the solution, where

§i=~§iA-AT§ Q +5B R, IBTS

S. () =8, (B. 3)
e AT = LTy _
§ =-(A" -5;BR,'BE =5, ) By,
ifi
§,(t) = 0 (B. 4)
<1, T, o -1.T N 1,7
m =8 BiRyByE - %(EB * "{R %
j#i
n;(tg) = 0 - (B.5)
and the Nash control for the ith player is
-l T

where x(t) is the trajectory resulting from integrating the state equation
from (xo,to), using the controls 551, . g{N:
% = Ax + ZB.;J. = Ax - ZB.R.’.IBT('S'.x+g.) (B.7)

v ) — 33 ) ) J

J J
When (B. 6) is substituted into (B. 3) and (B. 4), the resulting equations
together with (B. 7) form a two-point boundary value problem. Note
carefully that we never made any "closed loop assumptions" about the

other players' controls in reducing the ith player's Bellman equation

to a set of ordinary differential equations.




All that remains is to solve the two-point boundary value
problem. The only independent variable in these equations is t. Let

us define the n X n matrix Mi(t) by
E.(t) = M, (t)x(t) (assuming x # 0) (B.8)
Then

-1,T,« .
751 = -RBI(S, + M )x fori=1,...,N (B.9)

Substituting this into (B. 4) then gives a differential equation for Mi:

M, = -M.A - ATM, + (8. + M,) Z B.R'BY(E. + M)
i i i ! YL 3 ) J
j
-8.B.R'BTE,
1 1 11 1 1
= 1
M,(t) = 0 (B.10]

It is interesting to add this equation to (B.3). The result is
L& +m)=-E +Mia-aTE +m) -0
dt i i i i i i i

+ (8 + M.)ZB.R.‘.IB'.I'(E'. F M)
e LVt i It Rt I

J

5;(tg) + My(tg) = S,

(B. 11
If one defines Si = gi + M,, one sees that (B.11), which was obtained
from the Bellman equation, is the same as (4.10), obtained from the

variational necessary conditions.

We now seek an interpretation of the multipliers )\i’ i=1,...,N,
which appear in the necessary conditions for the open loop controls

(4. 5)-(4.8). Taking the gradient of (B. 2),



Tey T
Vix(x’t) = x Si(t) + “g"i (t) (B.12)
Evaluating Vix on the Nash path by using {B. 8),
- T . T
V0, 6) = x(0) (B, (0 + M (0] = w0 TS, (0T =T (B.13)

so )\i can be interpreted as the influence of a perturbation of x on the
ith player's cost, when the ith player is allowed to adjust (optimally)
his control while the other players are forced to use their "nominal®

Nash open loop controls.

The derivation presented here also gives an alternate way to

compute the open loop Nash costs. Substituting for gfi and ‘é’i in (B. 5},

o Tl T o=l T o _ 1 =T T -1
n, = x {zMB.R,. B, M, 2};[2(3j + M (BjRJ.j Ry,
i

-MIBRIIBTE. ¢ M) }x (B. 14)
S Rt B TR B

If we define the symmetric matrix Zi(t) by
1
n, = -Zx(t)TZi(t)x(t) (B. 15)

we find from (B. 14) that Zi satisfies

7, = -[aT —Z(é‘. sMI@RrIBTZ - Z[a -ZB.R.‘?BT(%’. + M)]
i Ut B Tt 1 VIt 2 1 Vet T B
] ]
s MIBRIBITM, - ) B+ MOBRIBTE, + M)
I At T I Bt et it Bt Bt
j#i

T -1 T~ o~ T -1 T
+ MB.R..B, (S, +M,)+(S. + M, )B.R.. B, M,
Z{lBJJJ J(J J) (J J)JJJJ 1}
j#Fi

Z,(t;) = 0 (B.16)




From (B.2), (B.8) and (B.16), the Nash cost for the ith player

starting at (xo, to) is

T T
x [8;(e ) + 2M (£ ) + Z.(t )]x

N

Vi(xo’ to) =

= 2x[5,(t ) + M (£ )" + Ml ) + Z ()

LT A
= 2% Pi(to)xo (B.1

where

T
Pi(t) = Si(t) + Mi (t) + Mi(t) + Zi(t)

By adding (B. 3), (B.10), the transpose of (B.10), and (B.16), a differ-
ential equation for Pi can be obtained. In fact, as one would expect,

it is exactly the same as (4.13).

Thus the open loop solutions can be obtained by the value function:
approach, provided that one is careful to treat all the controls of the
rivals of player i as functions of time only, until éfter the partial
differential equation for Vi(x, t) has been converted to a set of ordinary
differential equations. The results for the controls and costs are then
identical to the results obtained (somewhat more easily) by starting

from the variational necessary conditions.
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